VIII -Biology
Chapter - 3
ECOSYSTEMS
Ex-A. Fill in the blanks:

1. abiotic
2. biotic
3. producers
4. decomposes
5. sunlight
6. primary
7. trophic 10.beneficial
8. predator
9. food web

Ex-B Choose the correct option:
1 (d) Ozone
2. (c) biosphere
6. (6) predation
3. (d) Frog.
7. (c) constr
8. (b) Ebony
9. (c) Temperate evergreen forest
5. (a) producers
10.(d) Caribou

Exc Match the following:

1. Green plants
2. Mutualism
3. Parasitism
4. Tropical deciduous forest
5. Rainforest
6. Lien
7. Boreal forest

Ex-D Answer the following:
Ans 1: An ecosystem is a community of living beings in a given area that interact, with each there and the nonliving components of the area fo form a self -sustaining system?
Aquatic ecosystem - Fresh water, k Marine ecosystem Terrestrial ecosystem - Forest, Desert

Ans 2: Biome: several connected ecosystems in a large area of land or sea to getter form a biome.

Biosphere: All biomes together constitute the biosphere. It is the sums total of all the ecosystems on the earth.

Ans 3: An ecosystem consist of two components biotic and abiotic.
Producers, consumers and decomposes make up the bictic component.

Ans 4: Types of consumers - herbivores; carnivores, ammivitus and scavengers.
Human beings are omnivores.
Ans 5: Producers manufacture their, own food and donot depend upon others εg-Green plants. Decomposers decompose dead organic. matter, and draw nutrition from it. They also keep the soil fertile by releasing minerals into it and clean up the entronnent.

Ans. 6: A series of organisms linked with each other through the process of eating and being eater forms a ford chain.
Ans .7: Food chain follows only, one path but a food Web is a network formed by several connected food chains:
Eg - Food Chain \rightarrow Grass \rightarrow Deer \rightarrow Tiger
Fear web \rightarrow
Grasshopper
Grass \rightarrow Rabbit \rightarrow Hawk
Mouse \rightarrow snake λ

Ins:- Predation is a type of ecological relationship between organisms in which ene organism, kill and eat anther. Eg 1. Lion eats deer - 2 .eagle eats shake.
Sn L9: Layers of forest - 1. Forest floor 2. Understorey 3. Canopy.

Snell: Types of forests:-

1. Tropical forest: Flora -Ebony, Rubber, Teak, Sal

Fauna - Pythons, Tigers, seth bears.
2. Temperate forest: Flora - Fir, Pine, Maple, tEak, Cedar
fauna -Red foxes, habits, blackbeard
3. Boreal forest: Flora - Spruce, Pine, Aspen Found. Bison, grizzly bears
Ex - \& Explain in brief:
Ans 1: Air, water, light, temperature and sic constitutes the abiotic components of an ecosystem. Abiotic components help the biotic cempencente to survive -

1. Airs : It helps in regulating the temperature en the earth

- It has oxygen which is necessary for respiantion and burring.
- It has CO_{2} which is needed for photreynthesis.
- It has ozone that protects us from uv rays.
- Nitrogen is needed by living beings to make protons.

2. Water: All living beings need water to carry out the basic life precesses. Water provides. habitat to ass aquatic animals.
3. Sight: Sunlight is the main source of energy. Plants need light for the process of phetounsthesis
4. Temperature: The distribution of plants and animals depends on the range of temperature in different regions. Variation in temperature influences the behaviour or activity of an organism.
5. Soil: Being the storehouse of minerals and $H_{2} \mathrm{O}$ for plants, soil determines the type of vegetation a place has. And since oninsle depend en plants for food, it also determine the kind of animals living in a place.
Ans 2: It is a representation of the numbers of organisms at different trophic levels of a food chain. It shows producers at the base and consumers are arranged successively upwards.

The number of organisms generally decreases at each tr d level because at each trophic level a fraction of energy is lost. So to obtain enough energy, consumers at each level must eat a large amount of food.
Ans 3: Symbiosis is of 3 types -

1. Parasitism - In this relationship, one organism gets benefited and other gets harmed.
Eg-fice, ticks live on the hastisoody and suck their blood.
2. Mutualism - It benefits both organisms in the relationship. Eg - Rhizobium live in the roots of legrininuous plants. It cobain nutrition from the flint and in tureen help the plant in protein synthesis.
3. Commensalism, - In this relationship, one
organism gets benefitted and other organism is neither benefited nor harmed. Eg -Remoras attach thenusleves to sharks or wholes and feed on their leftover food.

Ans 4: They are called monsoon forest because they are situated at slightly higher latitudes and receive less rainfall thaw the rainforestes but on vet season they receive maximum rainfall.

These forests hove deciduous broadleaved trees. Teak, sal, sandalwood, silk cotter etc plants are found in these forests. Tiger, dee, sloth bears, elephants, birds, snakes, lizards etc. Are found in these forests.

Ans 5: Significance of forests:

1. Forests are veurces of timber, medicines, oils, resins. fuel, honey etc.
2. They regulate the climate, maintain the gaseous balance in air and central pollution.
3. They check soil erosion, control fetch and recharge ground water stores.
4. Forests are home of innumerable species. Conservation of ferrets:
5. Saplings must be planted to replace the felled trees.
6. Shifting cultivation must be discouraged.
7. Gazing in forests should be discouraged.
8. Protective and preventive measures should be taken against forest fires.

VIII -Biology
Chapter -4
The Circulatory system
Ex-A. Fill in the blanks:

1. emphatic
2. Rh negative
3. pacemaker
4. two
5. interatrial
6. cardiac.
7. 0
8. bicuspid arrest
9. $A B$
10. oxygenated
$\varepsilon_{x}-B$ Choose the correct option:
11. (c) no antibodies.
12. (d) both b and c
13. (c) interventricular septum
14. (d) Left ventricle k sorta.
15. (a) premenary- veins

7 (d) 140 mmHg
4. (d) all of these
8.(c) thymus gland

Ex-C True/Ealse:

1. False, right pulmonary artery.
2. True
3. True
4. False, thick ot thinner
5. True
6. False, donot
7. True
8. False, pormatese electrical conduction
9. True
10. False, different

Ex-D Answer the questions:
Ans 1: Components of blood:

1. Plasma: It transport blood cells, nutrients, proteins etc. throughout our body. It also transport Waste to kidneys or liver for excretion
2. RBC.S: They carry both oxygen and carbendioxide
3. WBCs: They defend the body against infection.
4. Blood platelets: They help in clotting of blood.

Ins 2: There are four blood groups - $A, A B, B$ and 0 . These are differentiated on the basis of the antigens on the surface of a person's ROCs.

Ins 3: Rhesus factor is a kind of antigen found on the RBCS of most people.

Ans 4: Three types of blood vessels are -.

1. Arteries: They carry oxygenated blood from heart to body.
2. Veins: They carry deoxygenated blood from various parts of body to heart.
3. Capillaries: They help in diffusion of gases and nutrients to various tissues.

Ans 5: Coronary arteries supply oxygenated blood to the cardiac muscles and cardiac veins carry the deoxygenated blood from these muscles to the sight auricle.
Ans 6: The primary pacemaker of the heart is the sinoatrial node.

It generates electrical signals that are conducted. throughout the muscles of the heart, stimulating the heart to contract and pump blood.
Ans 7: Palpitations are felt when the heart beats too hard or too fast or skips a beat.

Ex-r Explain in brief:
Ans 1: Oxygenated blood from the lungs enters the left auricle through, the pulmonary veins and flows into the left ventricle, from where it is pumped into the aorta to be circulated throughout the body.
Deosygenated blood from the tissues is carried by the superior and inferior vena cave into the right auricle from where it reaches the right ventricle and finally the lungs through the pulmonary artery.
Dig 4.3 on $\mathrm{Pg}-56$ - draw this diagram.
Ans 2: The systemic circulation carries blood from the entire body to heart and heart to entire body. But, the pulmonary circulation. carries blood from heart to lungs and bock to the heart.

Ans.3: When a personis systolic pressure exceeds 140 mmHg and diastolic pressure exceeds 90 mmHg g, the person is said to have. hypertension.

Hypertension can damage the inner, lining of the arterial walls, which promotes the oleposition of cholesterol. This leads to the blockage of arteries. Hypertension can also damage the eyes, kidneys and other organs. of the body.

Ans. 4: Heart attack is due to complete blockage of blood supply to the heart, while cardiac arrest happens

When heart stop functioning altogether.
Ins 5: The lymphatic system consists of lymph, lymph vessels and lymph nodes like tonsils. It also includes thymus glands, the spleen and bone marrow.
Functions - 1. It drain tissue fluid from the intercellular spaces into the blood stream.
2. Lymphoid organs and bone marrow produce lymphocyte.
3. It kills harmful cells (like cancer cells)
4. It fights infections and supply nutrients and oxygen.
5. It carries digested fats away from small intestine.

Lymph is formed from fluid that seeps through the thin walls of capillaries into the body's tissue. It lacks ROCs, platelets and some proteins found in blood

VIII - Biology
Chapter - 1
TRANSPORT IN PLANTS
Ex-A Fill in the blanks:

1. Diffusion
2. Semipermeable
3. Hypertonic
4. lower, higher
5. Carrier protein
6. Tracheids and vessels
7. phloem
8. Phloem fibres
9. Transpiration
10. lenticels, cuticle
11. Calcium
12. nitrogen, iron

Ex-B Choose the correct option:

$$
\begin{array}{llllll}
1 \cdot d & 2 \cdot b & 3 . a & 4 \cdot b & 5 . c \\
6 \cdot b & 7 \cdot d & 8 . d & 9 . b & 10 \cdot d
\end{array}
$$

ExeC Match the following:

1. micronutrient,
2. cell will gain water by osmosis,
3. connected to sieve tubes by pores
4. porous transverse wall of sieve tube.
5. helps cool the plant body
6. Active transport
7. Macronutrient
8. Separated by retting

Ex- D Answer the following:
Ans 1: Diffusion is a process in which particles of a substance move from an area of higher concentration, to an area of lower concentrative until they are evenly distributed.

Examples - 1. Plants can absorb minerals by diffusion.
2. Diffusion helps in gaseous exchange with the atmosphere
3. It also helps in release of water vapour. through stomata.
Ans 2:- Osmosis is the moverwent of solvent molecuis through a semipermeable membrane from an area of higher concentration to an area of lever concentration.
Diffusion can occur in solids, liquids and gases but in osmosis only water molecules can cross the membrane..

Ans 3: Active transport is the movement of molecules against their concentration gradient, from an area of lower concentration to an area of higher concentration. It requires expenditure of energy.
Ans 4: Xylem - tracheids, vessels, seem parenchyme and xylem fibres.
Phloem - sieve tiles, companion cells, phloem parenchyma and phloem fibres.
Ans.5: Transpiration is the process by which plants. release water in the form of water vapour
Ans 6: 1. It helps to concentrate the cytoplasm of cells, Which promotes. the absorption of water, by ounssis 2. It helps to distribute water and minerals.
throughout the plant body.
3. It has cooling effect on the plants.

Ans 7: Macronutrients - Calcium, potassium, magnesium, phosphorus, nitrogen and sulphur.
Micronetrients - Zinc, copper, manganese, iron, sodium, boron and molybdenum.
Ans 8: Mineral Deficiency symptoms

1. Nitrogen - slow growth, yellow leaves due to lack of chlorophyll (chlorosis)
2. Phosphorus -Roots and shoots are too short (hypoplasia), late flowering, leaves fall prematurely.
3. Calcium - Weak stem, death of tissues and yellowish leaf margins (necrosis)
4. Tron - less chlorwhiyel in leaves (chlorosis)

Ex- E Explain in brief:
Ans. 1: Take a large potato, peel it, and cut, off a slice from one end to make it flat. scoop out a chunk of potato from the other end to make a cavity. Fill the cavity partially with concentrated sugar solution and mark its level with a pin. Now place this potato in a beaker containing water so that it remains partially submerged in water. After 2 hours, observe the level of sugar solution within the cavity and mark it with, other pin. We will see that the level of sugar solution has risen because water from beaker enters the cavity by osmosis.

Draw diagram from $P_{g}=3$ (Eg. 1.4)
Ans 2: If a cell is placed in a hypotonic solution., the cell gains water by osmosis.
If a cell is placed in a hypertonic solution, it releases water into its surroundings and shrines If a cell is placed in an isotonic solution, there is no change in its size.
Ans 3: Four types of cell are found in xylem tissue -

1. Tracheids - They are elongated, tubular cell e with tapering ends and thick lignified walls. Tracheids are dead cells:
2. Vessels - They are also dead, elongated, tubelike structures with lignified walls. They are made of cells called vessel elements.
3. Xylem parenchyma - These are living parenchymateus cells that conduct water laterally and store food.
4. Xylem fibres - These are dead sclerenchynuatious cells that provide mechanical strength. to the tissue.

Draw diagram from Pg -5 (Fig. 1.8)
Ans 4: Phloem has four types of cells -

1. Sieve tubes - These are living, slender, elongated tube like cells placed end to end.
2. Companion cells - These are thin walled cells with a dense cytoplasm and an elongated nucleus.
3. Phloem parenchynna - These are living parenchynis
cells that store and conduct food.
4. Phloem fibres - These are dead sclerenchymateus cells that provide mechanical strength, to the tissue. These cells are also called blast fibres
Draw diagram from Pg -5 (Fig. 1.9)
Ans 5: A stomatal pore is surrounded by two guard cell e. Guard cells help to open and cease a stoma. by regulating their own water content. The concentration of glucose increases thithin the guard cells during the day. So they draw in water from the surrounding cells by osmosis. As a result, they bulge outwards, opening the stoma and allowing exchange of gases with the atmosphere. The opening of the stoma also allows water vapour to escape. This is, called transpiration.
Factors that affect transpiration are - light, soil water, humidity, temperature, winds and atmospheric pressure.
Ans 6: Take a healthy, well watered potted plant and cover pot with a rubber sheet properly to avoid. evaporation from the surface of the soil. Place this plant in sunlight and cover it with a bell jar to make it airtight. After few hours. we will see moisture on the inner wall of bell jor. This is due to water vapour released during transpiration.
Ans 7: The active transport of minerals into the root
hairs increases the concentration of minerals in these cells. This promotes the absorption of water from the soil by osmosis, until it reaches the seem vessels. More water in. the xylem vessels creates an upward pressure that pushes water and minerals up through the stem. This is how root pressure develops.

Ans 8: Take a healthy, well-watered potted plant. cut off the stem a few inches above the soil. Fix a long narrow glass tube to it with the help of rubber tube. Pour colourediwater in the glass tube and mark its level. Put little oil on it to prevent evaporation.

Alter sonsetime you will see that the level of coloured water in the glass tube has risen. due to water oozing out through the cut end of the stem because of root pressure.
Draw diagram from $\mathrm{Pg}=10$ (Fig. 1.14)

VIII -Biology
Chapter -5
THE NERVOUS SYSTEM
$\varepsilon_{x}-A$ Fill in the blanks:

1. axon hillock
2. hindbrain,
3. neurotransmitters.
4. neuromuscular junction
5. cell bodies
6. mixed
7. hypothalamus
8. Cerebrum
9. Cranial.
10. reflex action
\&x-B Choose the correct option:
11. d 2.c $c \quad 3 . d$ 4. α 5. a $6 . b$ 7.b 8.a

Ex-c match the following:

1. filled with cerebrospinal fluid
2. Carry impulses to the cyton
3. raises the level of an' organis activity
4. Controls eye adjustments
5. Deep within the cerebrum
6. Controlled by the pons
7. 31 pairs.
8. Controls emotions
9. Concerned with learning.
10. balance and posture.

Ex-A Answer the following:
Ans 1: Nervous system, Endocrine system.
Ans 2: Neuron has a nucleus containing cell body, called the cyton or soma. Fibre like projections, called dendrens or dendrites, arise
from cyton which carry in pulses to the cyton. A long tube like fibre, called the amen, arises from a slightly thickened region of the cyton, cabled the axon. hillock. The axon extends outwards from the cyton and end in many branches. Which further ends in synaptic knobs.

Ans 3:

Sensory, neurons

1. Carry impulses from sensory organs and. Other organs to the brain and spinal cord.

Motor neurons. Carry impulsed from the brain and spinal cord to the effector, organs.

Ans 4: A synapse between a motor neuron and a muscle fibre is called a neuromuscular junction

Ans 5: Nerves are cable like structure made up of bundles of axons. Roach nerve is covered with a layer of connective tissue and gets its nutricate. from blood vessels.

Ans 6: Sensory, motor, and mixed nerves.
Ans 7: Ventricles are the three interconnected cavities present in the cerebrum and are filled with cerebrospinal fluid.
Ans 8: It controls the eye adjustruents to see things.
Ans 9: The peripheral nervous system consists of 43 pairs of nerves that connect the central.
nervous system with all parts of the body. 12 pair of nerves arise from the brain (cranial. nerves) and 31 pair from the spinal cord (spinal nesses)

Ans 10: The sympathetic nervous system raises the level of an organs activity but. the parasympathetic nervous system decreases the organ's activity.

Ex-E Explain in brief :
Ans 1: An axe carries impulse ahoy from the cyton. When impulse reaches at the end. If an axes, it stimulates the release of neuretrasmitters. from the synaptic knobs. The neurotransmitters diffuse across the synapse and stimulate the dendrites. of the next neuron.

Ans 2: Parts of forebrain -

1. Cerebrum - It controls leaving, speech, memory, emotion, reasoning, voluntary activities, senses, response to pain and temperature
2. Hypothalamus - It controls endocrine system and emotions.

Ans 3:

1. It consist of cell bodies of the neurons.
2. Located in the upper layers of the cerebral hensisptheres.
3. It has grey colour due to grey nuclei in cell bodies.

White matters
It consist of the axons. of the neurons. Located in the deeper parts of the cerebrum It has. White colour due to myelinated axeosis

Ans 4: Parts of hind brain -

1. Cerebellum - It coordinates bed movements, posture and balance, helps in learning new movements.
2. Pons - It relays information from the forebrain to the cerebellum and controls sleep, breathing, hearing, taste. etc.
3. Medulla oblengata - It controls involuntary activities.

Ans 5: Functions of the spinal cord -

1. It relays messages to and from the brain through nerves.
2. It acts independently to control reflexes. Draw diagram from $\mathrm{Pg}-70$ (fig 5.7) ... only spinal White mater cord (cross section.)

Central canal

spinal Cord (Cross section)
Ans: It is involuntary and immediate response to stimuli.
Eg - We withdraw our hond immediately when it touches a hot object.
We instantly blink when a strong light. flashed in our eyes.
$\mathrm{CH}-3$
Force and Pressure
(Workout)
A fill in the blanks

1. Hest ar motion
2. arrow
3. non-rizid
4. magnitude

True or false
True 7. True 8. True 9. False 10. True
c
I1. Thrust is the force acting perpendicular to a surface.
12. A body exerts a thrust on a surface equal to its own weight
13. It depends on pressure
14. Unit of thrust is newton
15. Pressure is thrust per unit area
16. a) Thrust acting on a surface
b) Area of the surface on which the thrust acts
17. Pg no. 43 activity 3.2
18. Pressure increases when area decreases
19. S.I unit of pressure is Pascal.
20. Pg no. 44 activity $3.3 \propto \lg$ no. 47 activity 3.7 (only procedure)
22. a) The height of liquid Column
b) The density of liquid
c) Acceleration due to gravity
23. Our earth is surrounded by bands of air Called atmosphere.
24. Atmosphere Causes pressure on the earth Called atmospheric pressure
25. It is 10^{5} Pascal
26. It decreases
27. It is a push or pull which tends to change the stan of rest on uniform motion of body examples:- A football at rest when kicked moves * length of rubber band increases when pulled
Unit of force is 'Newton'
28. Pg no. 37 Heading 'Turning effect of a force A force has
axis of rotation \rightarrow The axis about which the bed turns is called axis of rotation
Factors \rightarrow a) The magnitude of the applied force
b) The perpendicular distance of the applied force from the axis of rotation
examples $\rightarrow *$ In a bicycle the force is applied on the pedal to turn the wheel

* We push or pule a door to open or shut

29. It is the product of the magnitude of the force and the perpendicular distance of applied force from the axis of rotation
Unit $\rightarrow \mathrm{Nm}$
30. Three \rightarrow same as in

Pressure \rightarrow same as 15
Examples:- \lg no. 40
right side example 1 and 2
31. 1. same as 20
2. fg no. 45 activity 3.4
3. Pg no 45 activity 3.5

32 Po no. 46 activity 3.6
examples : - 1. Bleeding starts from nose at high altitudes due to pressure exerted by ais 2. The at mosphevic pressure acting on the drink exerts force on the drink and pesto
it into the straw.
3. Due to atmospheric pressure ink gets filled in a fountain ben.
33.

$$
\begin{aligned}
M & =f \times d \\
& =10 \times 7=70 \mathrm{Nm}
\end{aligned}
$$

34. $F=\frac{M}{d}=\frac{30}{10}=3 \mathrm{~N}$
35. Take a tin Can and make three holes near the neck of the bottle at a same height from the bottom of the battle. Now fir l the water in the battle you will observe that equal amount of water starts flowing through each hole. This shows that the liquid pressure at a depth is same in all directions.

Energy
Workout
Tick the Correct option

1. Jowl 2. both (c) and (b) 3. $P=\frac{\omega}{t}$
2. IHP 5. No energy

True or false
6. T 7. T 8. f 9. T 10. T
fill in the blanks
11. There is displacement
13. Energy 14. acceleration 12. displacement
15. Watt
16. Match the following
(A) Joule (B) Conserves (C) watt (D) newton
17. Work is said to be done if force applied on an object displaces the object through same distance. Unit is Joule
18. Energy is the Capacity of doing work
Unit is Joule of Unit is Joule
19. It is defined as the sate of doing work by the bet
Uni is watt
20. * if displacement is not there

* displacement is at sighs angles to the disection in which force acts

21. Work done is zero because direction of motion is perpendicular to force.
22. The energy had by a body due to its position or motion is called mechanical energy.
23. The energy possessed by a body due to its position is Called potential energy. Potential energy is denoted es P. E or U. Its Unit is Joule (J)
24. In a pendulum potential energy and kinetic energy are inter-Convertible but it stops swinging after sometime It happens because of ais fiction.
25. Bono. 64 any 3 differences
26. Because there is no displacement
27. $\quad f=500 \mathrm{~N}, \quad S=5 \mathrm{~m}$

$$
W=F \times S=500 \times 5=2500 \mathrm{~J}
$$

28. $m=10 \mathrm{~kg}, h=10 \mathrm{~m}, \quad g=10 \mathrm{~ms}^{2}$

$$
U=m g h=10 \times 10 \times 10=1000 \mathrm{~J}
$$

29. $\quad m=5 \mathrm{~kg}, \quad g=10 \mathrm{~ms}^{-}, \quad h=3 \mathrm{~m}$

$$
U=m g h=5 \times 10 \times 3=150 \mathrm{~J}
$$

30. $m=20 \mathrm{~kg}, \quad v=1 \mathrm{~ms}^{-1}$

$$
k \cdot E=\frac{1}{2} m v^{2}=\frac{1}{2} \times 20 \times(1)^{2}=10 \mathrm{~J}
$$

31. $W=5000 \mathrm{~J} \quad t=10 \mathrm{~s}$

$$
P=\frac{\omega}{t}=\frac{5000}{10}=500 \omega \text { att }
$$

32.

same as 17,
Examples : - a) A horse pules a Cast
b) An ox ploughs a field
c) An engine pulls a train

Factors : - Force * displacement
33. Same as 18
examples : - when a boy rides a bicycle and Covers some distance thus, he spends energy in doing work.
34. Mechanical energy $=$ K.E $+P \cdot E$
examples :- Simple pendulum and Hydro power plant
35. Same as 23
examples : - a) Bent branch of a tree
b) Compressed spring c) Hammering
36. At a height above the ground is measured by the amount of work done in moving it upto that height against the force of gravity.
factors :- * mas

* Height

37. It is the energy possessed by it due to its moot in It depends upon mas and velocity. examples: a) An apple falling from a tree
b) flowing water of river
c) Blowing wind

Differences on \lg no. 60
38. It states that energy Can neither be created nos bo. destroyed, it Con only change its form. example: Pendulum
39.

Roller Coaster

Dam of power plant

40. Same as 19. Differences on page 63 and 64
41. yes
42. No
45. No
43. No
46. No
44. No
47. No
48. Yes
49. Potential energy
50. Kinetic energy
51. Potential energy
52. Compressed spring - potential energy. Physics VIII

$$
\begin{aligned}
& \text { ANSWER KEY } \\
& \text { CH-3 (CLASS } \left.8^{\text {TH }}\right) \\
& \text { (CHEM!S TGY) dassmate }
\end{aligned}
$$

SHORT ANSWER QUESTIONS:
(1) An element is a substance that cannot be split into simpler substances by a chemical means.
(2) A compound is a substance that can be split into simpler substances by a chemical means.
(3) A mixture is a substance which can be split into two or more pure substances by a physical means such as filtration, sublimation and distillation.
(4) No. e.g. CaCO_{3}
(5) (a) Carbon and sulphur - HOMOGENEOUS
(b) Brass - HOMOGENEOUS
(c) Salt and water - HOMOGENEOUS
(d) Water and carbon tetrachloride - HETEROGENEOUS
(e) Sand and salt - HETEROGENEOUS
(f) Water and oil - HETEROGENEOUS
(6.) No, the constituent elements are always present in fixed proportion.
(7). Yes, because sulphur is soluble in carbon disulphide.
(8) Chromatography
(9) (a) Liebig Condenser
(B) Sublimation
(c) Adsorbent
(d) Chromatogram
(10) By Fractional distillation.

LONG-ANSWER QUESTIONS:
(1)
ELEMENT COMPOUND
(i) An element is a substance (i) A compound is a that cannot be split into simpler substances by a chemical means.
(ii) It is represented by a symbol
(iii) Examples: Hydrogen (H), Carbor(C) Oxygen (O), Nitrogen (N), sulphur (S), etc.
substance that can be split into simpler substances by a chemical. means.
(ii) It is represented by a formula
(iii) Examples: Calcium carbon--ate $\left(\mathrm{CaCO}_{3}\right)$, carbon dioxide, $\left(\mathrm{CO}_{2}\right)$ sulphur dioxide $\left(\mathrm{SO}_{2}\right)$, etc.

Long-Answer Questions

1. State the differences between an element and a compound.
2. Give three points of difference between a mixture and a compound. -31
3. Describe the separation of salt from sand. -30
4. Describe fractional distillation. -27
5. How would you separate the dyes of an ink? $-28,29$
6. Describe two methods to separate iron filings and sulphur powder from a mixture of the two -30
7. A mixture contains carbon, sulphur and nitre. How would you separate them? -31

Objective Questions

Choose the correct option.

1. Which of the following is an element?
(a) Hydrogen
(b) Salt
(c) Water
(d) Glucose
2. Ammonium chloride can be separated from sand by
(a) decantation
(b) fractional distillation
(c) sublimation
(d) chromatography
3. Common salt can be separated from sand by
(a) distillation
(b) fractional distillation
(c) using water as a solvent
(d) using a separating funnel
4. For separating the components of which of the following mixtures can a separating funnel be used?
(a) Water + sodium chloride
(b) Chalk + water
(c) Alcohol + water
5. The dyes of an ink are best separated by
(a) filtration
(b) using a separating funnel
(c) fractional distillation
(d) chromatography

Match columens A and B.

B

A	B
(i) Sulphur	(a) A heterogeneous mixture 3
(ii) Sugar	(b) A homogeneous mixture 4
(iii) Mud	(c) An element 1
(iv) Alloy	(d) A compound 2

Fill in the blanks.

1. A can be split into simpler substances by a physical means like filtration, sublimation 0 : distillation. (mixture/compound)
2. The constituents of a compound are present in proportion by mass. (a definite/any)
3. A fizzy drink is a mixture. (homogeneous/heterogeneous)
4. Two liquids may be separated by using a separating funnel. (miscible/immiscible)

Write ' T ' for true and ' F ' for false for the following statements.

1. An element contains more than one type of atoms. - False
2. A compound containsolly one type of atoms.-False
3. Air is a mixture of elements and compounds. - True
4. An alloy is a homogeneous mixture.-True
5. Common salt is manufactured by the evaporation of sea water.-The

A Simple Experiment on Electrolysis

You can perform an interesting experiment on electrolysis at home.
Remove the plastic insulation from both ends of two copper wires. The naked ends are a shining brown-red. Use a naked end of one wire as the anode and that of the other as the cathode. Introduce the two electrodes into a glass containing distilled water. You can buy distilled water from a chemist's. Connect the other ends of the two wires respectively to the positive and negative terminals of a 3-volt battery. You will find that no change takes place. This is because distilled water does not allow an electric current to pass through it.
Now, pour a few drops of hydrochloric acid (bathroom acid) into the distilled water and make the connections as before. A gas begins to evolve at the cathode (negative electrode). The

Fig. 3.14 Electrolysis of acidulated water evolution becomes vigorous within a short while. The evolution of gas at the anode (positive electrode) is relatively slow. What is happening is the electrolysis of acidulated water. Stop the electrolysis after some time. Take out the electrodes and examine them. You will find that the anode has become blackish. Why? On electrolysis, acidulated water gives hydrogen at the cathode and oxygen at the anode. The oxygen reacts with the copper (of the anode) to form copper(II) oxide, which is black.

Fig. 3.9 Distillation
This is how distilled water is prepared in the laboratory.
7. Fractional distillation LONG 4 EBy fractional distillation, we can separate liquids which differ in their boiling points by $20^{\circ} \mathrm{C}$ or more.]

Fig. 3.10 Fractional distillation
LONG (4)

The liquid mixture is boiled in the distillation flask fitted with a fractionating column and a Liebig condenser (Figure 3.10).

The mixed vapours enter the fractionating column, where the vapours of the higherboiling (i.e., less volatile) liquid condense and trickle back into the distillation flask. The vapours of the lower-boiling (i.e., more volatile) liquid, however, pass into the Liebig condenser, where they condense-the liquid is collected in the receiver.]

The temperature of the boiling mixture remains constant till the lower-boiling liquid distils completely. Then the temperature again rises till the higher-boiling liquid starts distilling. The receiver is quickly changed to collect the higher-boiling liquid.

The liquids obtained by boiling a mixture at different temperatures are called fractions and the method of fractional distillation is also called fractionation.

By this method, we can separate

- benzene (boiling point $80^{\circ} \mathrm{C}$) from toluene (boiling point $110^{\circ} \mathrm{C}$),
- ethyl alcohol (boiling point $78^{\circ} \mathrm{C}$) from water (boiling point $100^{\circ} \mathrm{C}$), and
- petrol, diesel and kerosene from crude oil.

8. Using a separating funnel

A separating funnel (Figure 3.11) is used to separate two or more immiscible liquids. The mixture is placed in a separating funnel and allowed to stand. The different immiscible liquids form separate layers, which can be collected in different vessels one after the other.

By this method, we can separate an oil, benzene, toluene or ether from water.

Fig. 3.11 A separating funnel

9. Sublimation

Using this method, we can separate a substance that sublimes (e.g., ammonium chloride, camphor or iodine) from one that does not (e.g., salt, sand or chalk). A funnel is inverted over the mixture placed in a china dish. A dry test tube is also inverted over the outlet of the funnel. The outlet of the funnel is loosely plugged with cotton. The mixture is heated.

Fig. 3.12 Sublimation

The sublimable component vaporises and the vapours solidify in the test tube and on the cooler part of the funnel.
10. Chromatography

LONG 5
[By chromatography, we can separate two or more solids from one another provided they are soluble in the same solvent. The solvent may be a pure liquid like water, alcohol or acetone, or a mixture of two or more of these.

Fig. 3.13 (a) The set-up used in paper chromatography. (b) The colour of the ink from a green sketch pen separates into blue and yellow.

Thee method works on the principle of adsorptioni] One should understand the differencebetweenadsorptionand absorption. In absorption a substance gets equally distributed over the entire bulk of another substance, like dissolved air in natural water or carbon dioxide in a fizzy drink. Adsorption, however, is a surface phenomenon, in which a substance is held at the surface of another by a weak force. An example is a dye held on the surface of a fibre. The substance that is adsorbed (e.g., a dye) is called the adsorbate and the one at the surface of which it is adsorbed (e.g., a fibre), the adsorbent. In chromatography, we generally use cellulose, silica or alumina as an adsorbent. Cellulose is conveniently used in the form of blotting paper, filter paper (generally Whatman 41) or specially made chromatographic paper. We will now discuss the technique of paper chromatography.

You must have observed that a blotting paper soaks a liquid that spreads fast over the paper. The liquid moves even against gravity, i.e., upwards on a vertically placed blotting paper.

LONG (5)
A long strip of chromatographic paper or of a good-quality filter paper is cut out. A drop of a solution of the mixture (say the ink of a green sketch pen) is placed about a centimetr from one end of the strip and dried. A very small amount of the solvent is taken in a jar. The paper strip is suspended in the jar such that the end near which the mixture is placed just touches the solvent. The whole set-up is left undisturbed. After some time, one can observe that the green-ink spot has moved up the strip and separated into two coloursblue and yellow. (In fact, the blue and yellow make up the green.)

This happens because the different dyes (pigments), i.e., the different colouring substances, are held (i.e., adsorbed) by the adsorbent with different forces-some by stronger and some by weaker forces. The one that is held less strongly is driven faster by the solvent than that held more strongly by the adsorbent. As a result, the different pigments move with different speeds over the adsorbent surface under the influence of the solvent. And so they get separated.

The array of colours on a chromatographic paper is called a chromatogram. One can take a mixture of inks of different colorus to have a more colourful chromatogram.

The smaller strips of different colours are now cut out from the main strip. And the colouring matter can be obtained from each strip by dissolving it out in the solvent and evaporating the solvent.

In chromatography, the adsorbent part is called the stationary phase and the things that move, i.e., the solvent and the solution, are collectively known as the mobile phase. Different types of chromatographic techniques have been developed and named on the basis of the types of phases. Column chromatography is a commonly used technique, in which the stationary phase is a column of the adsorbent, i.e., the adsorbent is packed in a vertically placed wide tube. Other well-known types are gas-liquid chromatography (GLC) and highproficiency liquid chromatography (HPLC).

Separation Methods: A Summary

A summary of the methods of separation of the components of mixtures is given in Table 3.3.

Type of misture and method	When applicable	İample
1 Strims	When the particle sizes of the components are different	Separating (i) bran from flow (ii) stones from sand
2. Magnetic separation	When one of the constithents is magnetic	Separating iron from sulphur
3. Sublimation	When one of the components sublimes and the other does not	Separating ammonium chloride or camphor from salt or chalk
4. Dissolution and evaporation	When one of the constituents is soluble	Separating salt or sugar from sand
5. Chromatogrophy	When the whole mixture is soluble	Separating pigments of an ink or a flower
Solid-liguid mixture		
1. Sedimentation and decantation	When the mixture is heterogeneous	Separating sand or chalk from water
2. Filtration	-do-	-do-
3. Distillation	When the mixture is homogencous or heterogeneous	Separating water from salt, sugar or sand
Liquid mixture		
1. Using a separating funnel	When the liquids are immiscible	Separating oil from water
2. Fractional distillation	When the miscible liquids differ in boiling point by $20^{\circ} \mathrm{C}$ or more	Separating (i) alcohol from water (ii) benzene from toluene

Soparation of mixtures-a few examples

Through the following examples, you will

 learn how to choose a method for separating the components of a given mixture.
1. A sand-water mixture Sand can be separated

 from water by filtration or distillation. In distillation, the water distils out, leaving the sand as residue.2. A salt solution By distillation, the water can be obtained as the distillate and the salt as the residue. (By evaporation to dryness, the salt can be obtained but the water will be lost.) LONG
3. A salt-sand mixture The salt can be dissolved in water and the sand filtered out. The filtrate, on evaporation to dryness, yields the sall.]
4. A sugar-chalk mixture Sugar is soluble in water but chalk is not. So, the sugar can be dissolved out in water, leaving the chalk behind. The mixture, on filtration, will give the chalk as the residue and the filtrate, on evaporation or crystallisation, will yield the sugar.
5. An iron filings-sawdust mixture As iron is magnetic and sawdust is not, magnetic separation will be a convenient method to separate them.

LONG 6

- 6. An iron filings-sulphur mixture Two methods can be used.
(i) Magnetic separation (Iron is magnetic but sulphur is not.)
(ii) Dissolution of the sulphur in carbon disulphide followed by the recovery of the sulphur from the solution by evaporation or crystallisation.

7. A carbon-sulphur mixture Knowing that sulphur is soluble in carbon disulphide but carbon is not, you can suggest the method.
8. A water-oil mixture As water and oil are immiscible, they will form separate layers
and can, therefore, be separated by using a separating funnel.

Remember that, like oil, chloroform, carbon tetrachloride and ether are also immiscible with water. So, the method will be useful for a mixture containing water and any of these liquids.
9. A benzene-toluene mixture As the difference in the boiling points of benzene $\left(80^{\circ} \mathrm{C}\right)$ and toluene $\left(110^{\circ} \mathrm{C}\right)$ is more than $20^{\circ} \mathrm{C}$, the two miscible liquids can be conveniently separated by fractional distillation.

10. An ink-mixture By paper chromatography.

11. A salt-sand-sulphur mixture Among the three components, only sulphur is soluble in carbon disulphide and only salt in water but sand in neither of the two solvents. So, the sulphur can be dissolved out in carbon disulphide. From the residue containing salt and sand, the salt can be dissolved out in water, leaving the sand behind. The sulphur and salt can be recovered from their solutions by evaporating the solvents.

Alternatively, first the salt can be dissolved out in water and then sulphur in carbon disulphide.

12. A carbon-sulphur-nitre mixture (gunpowder) Gunpowder is an explosive containing carbon,
sulphur and potassium nitrate (nitre). Only sulphur is soluble in carbon disulphide and only nitre in water. So, the sulphur and nitre can be dissolved out successively in carbon disulphide and water, and recovered from the solutions by evaporating the solvents or by crystallisation. After the final dissolution, carbon will be left as the residue.

Alternatively, the nitre can be dissolved out first and then the sulphur.

Difference between a Mixture and a Compound
We can now conclude that a mixture differs from a compound as shown in Table 3.4.

LONG Ans $2 \downarrow$
Table 3.4 How a mixture differs from a compound

Mixture
Compound

1. It is an impure substance.
2. The components can be present in any proportion.
3. The components show their individual properties.
4. The components can be separated by a physical means.

It is a pure substance.

The constituents must be present in a fixed proportion.

The constituents do not show their individual properties.

The constituents cannot be separated by a physical means.

Points to Remember

- An element is a substance that cannot be split into simpler substances by a chemical means. It is represented by a symbol.
- A compound is a substance that can be split into simpler substances by a chemical means. It is represented by a formula.
- The constituent elements of a compound
- can be separated from it only by a chemical means and not by a physical means,
- are present in it only in a fixed proportion of atoms and of mass, and
- do not retain their properties in it.
$\frac{\text { ANSWER KEY }}{\text { CLASS- } 8^{\text {th }}}$
CHAPTER-5
The Language of Chemistry.
* Short-Anower Questions:

1. A symbol is an abbreviation of the name of an element. It consists of one or two letters of the English or the Latin name of the Element.
2. Carbon $\rightarrow C$

Chlorine $\rightarrow \mathrm{Cl}$
Chromium $\rightarrow \mathrm{Cr}$
Cobalt $\rightarrow \mathrm{C}_{0}$
3. Helium (He), Neon (Ne) and Argon (Ar).

4.	(Element)	(Latin name)
Sodium	Natrium	(Symbol)
Potassium	Valium	Na
Iron	Ferrum	K
Copper	Cuprum	Cu

5. (i) Copper (II) chloride

[Cupric or copper (II) chloride]
(ii) Copper (II) sulphate

6. FeO \rightarrow Iran (II) oxide or Ferrous oxide. $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ Iron (III) oxide or ferric oxide.
7. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
8. A chemical equation in which the number of atoms of each element on the reactant side is equal to that on the product side is called a balanced chemical equation.
9. 2 molecules of Hydrogen chloride will be forme ie.

$$
\underset{(1 \text { moleale })(\text { molecule })}{\mathrm{H}_{2}}+\mathrm{Cl}_{2} \longrightarrow \underset{(2 \text { molecules })}{2 \mathrm{HCl}}
$$

10. 2 molecules of Hydrogen will be regriered. ie. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$(2$ molecules) (1 molecule) (2 molecules)
11. 2 molecules of Ammonia will be formed. i.e: $\underset{(1 \text { molecule })}{\mathrm{N}_{2}}+\underset{(3 \text { molecules })}{3 \mathrm{H}_{2}} \rightleftharpoons \underset{(2 \text { molecules })}{2 \mathrm{NH}_{3}}$
12. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\underset{\text { (milky })}{\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{Ol}}$ limewater) (Cardoon $\begin{gathered}\text { (Calcium } \\ \text { dioxide) }\end{gathered}$ (water)

* LONG-ANSWER QUESTIONS:

1. $P g-48,49$
2. $\mathrm{Pg}-49 \quad$ see Photograph.
3. $P g-52,53$

* Objective Questions - (see Photograph)

Formulae

formula mber(s) of atoms a molecule gives the aments present in the molecule.
other words, it tells us how many atoms ch elements have combined together to he molecule.

Mae of Elements

an atom of an element combines mother atom (s) of the same element, a use of the element is formed.
ne number of atoms contained in a molecule called the atomicity of the molecule.
ules of nitrogen, oxygen, fluorine and ne contain two atoms of the element, ey are represented as $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}$ and spectively and are said to be diatomic. mon example of a triatomic gas is $\left(\mathrm{O}_{3}\right)$.
atom of a noble-gas element, e.g., $\mathrm{n}(\mathrm{He})$, neon (Ne), argon (Ar), etc., highly inactive, does not combine with atoms. Hence, a molecule of a noble stains only one atom of the element. In words, noble gases are monootomic.
e atomicity of phosphorus is $\varepsilon\left(P_{4}\right)$ and sulphur is $8\left(\mathrm{~S}_{8}\right)$.

alency of an Element

e combining capacity of an clement with her elements is known as its vairscy.
is given by the number of hydrogen that one atom of the element combines r displaces from a compound. e atom of Cl combines with one atom of

H to form one molecule of hydrogen chloride. So, the valency of Cl is 1 . But one atom each of O, N and C combines with two, three and four atoms of H to form a molecule of water, ammonia and methane respectively. Hence, the valencies of O, N and C are 2,3 and 4 respectively. On the other hand, an atom of Na , Mg and Al displaces one, two and three atoms of H respectively from an acid. So, the valencies of Na, Mg and Al are 1,2, and 3 respectively.

Elements with valencies $1,2,3$,etc., are said to be monovalent, divalent, trivalent, and so on. The valencies of the first twenty elements, i.e., those having atomic numbers 1 to 20 , are given in Table 5.1.

Table 5.1 Valencies of the first twenty elements

When elements are arranged in increasing order of atomic number, we find that their valencies are also arranged in an order, as mentioned below.

The valency gradually rises from 1 to 4 and then falls to 1 and finally to 0 .

- The elements in a column have the same valency. For example, Li, Na, and K as well as F and Cl have the valency 1. Similarly, Be, Mg and Ca as well as O and S have the valency 2.
- The elements He, Ne and Ar do not combine with other elements and are, therefore, assigned the valency 0 (zero). They are called noble-gas elements.]
You will later learn that the above kind of trend in a property is known as the periodic nature or the periodicity of the property. The term periodic means appearing at certain intervals. Don't you find that valency has a periodic nature?

Molecule	Example
Monoatomic	$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$
Diatomic	$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}$
Triatomic	O_{3}
Tetratomic	P_{4}
Octaatomic	S_{8}

Formulae of Compounds

Long (1)
You have learnt earlier that [the formula of a binary compound (i.e., a compound formed by only two elements) is obtained by transposing the valencies.] Thus, the formula of the compound formed by the elements A (valency y) and B (valency x) is $\mathrm{A}_{x} \mathrm{~B}_{y}$.

Long (1)

$$
\xrightarrow{\substack{y \\ \mathrm{Na}_{2}}} \rightarrow \mathrm{~A}_{x} \mathrm{~B}_{y}
$$

$\sim \mathrm{Ca}<\mathrm{Cl} \Rightarrow \mathrm{CaCl}_{2}$

$$
\checkmark \stackrel{3}{\mathrm{Al}_{0}}<\mathrm{O}_{4}^{2} \Rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

The numeral subscripts are divided by a common factor, if any. For example,

$$
\begin{array}{cc}
\stackrel{4}{\mathrm{C}} & \stackrel{2}{\mathrm{O}} \Rightarrow \mathrm{C}_{2} \mathrm{O}_{4} \Rightarrow \mathrm{CO}_{2} \\
\stackrel{2}{2} & 2 \\
\mathrm{Ca} & \mathrm{O} \\
\mathrm{Ca}_{2} \mathrm{O}_{2} \Rightarrow \mathrm{CaO} \\
\mathrm{Al} & \stackrel{3}{\mathrm{~N}} \Rightarrow \mathrm{Al}_{3} \mathrm{~N}_{3} \Rightarrow \mathrm{AlN}
\end{array}
$$

There are some exceptions, e.g., $\mathrm{H}_{2} \mathrm{O}_{2}$
(hydrogen peroxide), $\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene) $\mathrm{C}_{4} \mathrm{H}_{10}$ (butane) in which the numeral sub scrip are not divided by a common factor. $\mathrm{Y}_{\mathrm{O}} \mathrm{u}_{\mathrm{w}}$ learn the reason in higher classes.

Variable valency

Some elements show variable valency, $\mathrm{Cu}(1,2)$, iron $(2,3)$, phosphorus $(3,5)$ sulphur $(2,4,6)$. The valency of such element in a compound is often indic in Roman numerals in the name of compound, as shown below.

$$
\begin{aligned}
& \stackrel{1}{\mathrm{Cu}} \stackrel{2}{\mathrm{O}} \Rightarrow \mathrm{Cu}_{2} \mathrm{O} \text { copper(I) oxide } \\
& \stackrel{2}{\mathrm{Cu}} \stackrel{2}{\mathrm{O}} \Rightarrow \mathrm{CuO} \text { copper(II) oxide } \\
& \stackrel{2}{\mathrm{Fe}} \stackrel{2}{\mathrm{O}} \Rightarrow \mathrm{FeO} \quad \text { iron(II) oxide } \\
& \stackrel{3}{\mathrm{Fe}} \stackrel{2}{\mathrm{O}} \Rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \text { iron(III) oxide }
\end{aligned}
$$

As an exercise, you can guess the vale of P in PCl_{3} and Cl , and those of S ir SO_{3} and SO_{3}.

Compounds contatry radicals
You remember that
a radical is a kind of entity that can be
atom with a charge on it or a group of ate
behaving as a single atom with a charge
the group.

It has a valency which is the sam charge (without sign).

Positive radicals (e.g., $\mathrm{Na}^{+}, \mathrm{K}^{+}$, $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ an combine with negative radicals (e. $\mathrm{OH}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{4}^{2-}$, and PO_{4}^{3-}) to form compounds. The of such a compound can again be obt transposing the valencies (i.e., charge sign) of the radicals and dividing the of radicals by a common factor, if an

Some examples are given below.

Radicals carry a charge over them but the ${ }^{(2)}$ compounds they form do not. The compounds are electrically neutral. Hence, the positive and negative radicals must be present in a compound in such numbers that the opposite

Fig. 5.1 Valency cards making up (a) $\mathrm{Ca}(\mathrm{OH})_{2}$, (b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and (c) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

LONG
(2)
charges cancel each other. For example, in Al_{2} $\left(\mathrm{SO}_{4}\right)_{3}$, the total positive charge is $2 \times 3=6$ for two Al^{3+} ions and the total negative charge is $3 \times 2=6$ for three SO_{4}^{2} ions. You can understand this by using valency cards also as shown in Figure 5.1.

Chemical Equation

A chemical change, i.e., a chemical reaction, is represented by a chemical equation. You know that in a chemical reaction, the substances we start with are called reactants and those we end up with are called products. In an equation, we mention the reactants on the lefthand side and the products on the right-hand side, with an arrow in between.

Reactants \longrightarrow products

In the previous class, you have learnt about the word equations in which we mention the reactants and products by name. Here, we will learn writing equations using symbols and formulae instead of words.

Equations Using Symbols and Formulae

Such equations are quantitative in nature and much more informative than word equations. They are written in the following three steps.

1. Writing the skeleton

The skeleton of an equation is first written by noting the symbols and formulae of the reactants on the left side and those of the products on the right side, with an arrow in between.

For example, carbon, when burnt in a sufficient supply of air, forms carbon dioxide. The skeleton of the equation is written as follows.

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

But carbon, when burnt in an insufficient supply of air, forms carbon monoxide. And

Solution Let us now see if we can balance a chemical equation without writing the steps so elaborately.

The reactants and the product may be written as follows.

$$
\mathrm{Mg}+\mathrm{O}_{2} \longrightarrow \mathrm{MgO}
$$

Balance O: $\mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
Balance $\mathrm{Mg}: 2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
Therefore, the balanced chemical equation for the reaction is

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

EXAMPLE 7 On being strongly heated, potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ gives potassium chloride and oxygen. Write a balanced chemical equation for the reaction.

Solution The reactant and the products can be written as follows.

$$
\mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+\mathrm{O}_{2}
$$

Balance O:

$$
2 \mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+3 \mathrm{O}_{2}
$$

Balance K and Cl :

$$
2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

Hence, the balanced chemical equation is

$$
2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

EXAMPLE 8 Balance the equation

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}
$$

Solution Balance $\mathrm{N}: \mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
Balance H: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
Thus, the balanced equation is

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

EXAMPLE 9 Is the following equation balanced? If not, balance it.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

$\begin{array}{ll}\text { Solution } & \text { The equation is not balanced } \\ \text { atom counts of } \mathrm{Na}, \mathrm{H} \text { and } \mathrm{Cl}_{\text {on }}\end{array}$ two sides do not tally.
Balance Na:

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \\
& 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{C}
\end{aligned}
$$

Balance H and Cl :

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow
$$

$$
2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}
$$

Hence, the balanced chem equation is

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow \\
& 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}
\end{aligned}
$$

Making a Chemical Equation More Information

A balanced chemical equation tells us ho many atoms and molecules of which reactant give how many atoms of which product Had you known the amasses of the atoms o different elements, yes could have calculate the quantities too of substances. Keeping such calculations :- for higher classes, le us learn here how :. ea chemical equation more informative.

Mentioning the conditions and catalysts
The conditions under which a reaction takes place and the catalysts needed, if ans are mentioned at the arrow-generally the condition above and the catalyst below the arrow.]

You have learnt earlier that
a catalyst is a substance that generally speeds up a reaction without itself undergoing any change.
[Sometimes, the symbol or formula is mentioned in square brackets at the arrow to indicate a catalyst.]

Mentioning the states of the reactants and
products products
The state of each reactant and product is mentioned along with it, using the following
(s) for the solid state
(l) for the liquid state
(g) for the gaseous state, and
(aq) for an aqueous solution
When these symbols are used, a downward arrow (\downarrow) for a precipitate and an upward arrow (\uparrow) for a gas on the product side are not used. Instead, we use (s) for (\downarrow) and (g) for (1).]

Mentioning the name and colour of a substance, if needed

The name and/or colour of a substance is mentioned, if needed, below the symbol or formula of the substance in the equation-the name outside and the colour within brackets.]

Examples

The following examples will show how informative a chosicai equation becomes
when we include the points mentioned above.

1. Hydrogen reacts with chlorine in the presence of light to form hydrogen chloride gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { light }} 2 \mathrm{HCl}(\mathrm{~g})
$$

2. When ignited, a mixture of hydrogen and oxygen (in the volume ratio $2: 1$) explodes to form water vapour.

$$
\begin{equation*}
\left[2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { ignite }} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right] \tag{LaNG}
\end{equation*}
$$

3. Solid potassium chlorate, when heated at $200-300^{\circ} \mathrm{C}$ in the presence of manganese dioxide as catalyst, gives oxygen, leaving behind a residue of potassium chloride.

$$
\left[2 \mathrm{KClO}_{3}(\mathrm{~s}) \frac{200-300^{\circ} \mathrm{C}}{\mathrm{MnO}_{2}} 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})\right] \pi
$$

4. Carbon dioxide turns limewater milky.

$$
\begin{aligned}
& \underset{\text { limewater }}{\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})} \longrightarrow \\
&\left.\underset{\text { milky }}{\left.\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]}\right]
\end{aligned}
$$

5. A burning piece of magnesium continues to burn in a jar of carbon dioxide, forming white smoky magnesium oxide with some black carbon particles.

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \xrightarrow{\text { burn }} \underset{\text { (white) }}{2 \mathrm{MgO}(\mathrm{~s})}+\underset{\text { (black) }}{\mathrm{C}}
$$

Points to Remember

- A symbol is an abbreviation of the name of an element. It consists of one or two letters of the English or the Latin name of the element.
- The symbol of an element represents the element and one atom of it. More than one atom of an element is indicated by a numeral subscript.
- A formula represents a molecule of an element or a compound. It gives the number of atoms of the same or different elements present in a molecule.
- The combining capacity of an element with other elements is called its valency. It is given by the number of H atoms that an atom of the element combines with or displaces from a compound.
- The formula of a binary compound can be obtained by transposing the valencies of the elements.
- The valency of a radical is the same as the charge on it without sign. So, the formula of a compound containing radicals is obtained by transposing their valencies.

3. Discuss how you can make a balanced chemical equation convey more than the symbols and formulae of the reactants and the products. $\mathrm{Pg} 52,53$

Objective Questions

Choose the correct option.

1. Which of the following symbols is not derived from the Latin name of the element?
(a) Fe

$$
\text { (b) } \mathrm{Cu}
$$

2. Which of the following symbols is derived from the Latin name of the element?
$\begin{array}{ll}\text { (a) } \mathrm{He}\end{array}$
(d) Pb
(a) He
(b) Ne
(d) Ag
3. Which element among the ones appearing below is pentavalent?
$\begin{array}{lll}\text { (a) } \mathrm{CaO} & \text { (b) } \mathrm{Ne} & \text { (c) } \mathrm{Mg}\end{array}$
(a) CaO
(b) NH_{3}
(c) MgSO_{4}
(d) PCl_{5}
4. What is the valency of Mg in $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?
(a) 1
(b) 2
(c) 3
(d) 4
5. What is the value of x in the following equation?
$\mathrm{CaCO}_{3}(\mathrm{~s})+x \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
(a) $1 \xrightarrow[(b) 2]{ }$
(c) 3
(d) 4
6. Which of the following is not a balanced chemical equation?
(a) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(c) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
(b) $2 \mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+3 \mathrm{O}_{2}$
(d) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

Fill in the blanks.

1. Nitrogen is in AlN. (monovalent/trivalent)
2. One sulphate radical will take up sodium radical(s) to form sodium sulphate. (one/two)
3. $2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow[\text { catalyst }]{\mathrm{MnO}_{2}} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
4. $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
5. $2 \mathrm{NaHCO}_{3} \xrightarrow{\text { heat }} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Write ' T ' for true and ' F ' for false for the following statements.

1. Ozone is a triatomic gas. \rightarrow True
2. The atomicity of sulphur is ${ }^{8}$. \rightarrow False
3. One dipositive radical will require only one dinegative radical to form a compound. \rightarrow True
4. A noble-gas element is monoatomic as well as zorovalent. \rightarrow Fonovalent. \rightarrow False
5. A substance in solution is indicated in a chemical equation by the symbol (s). (aq) \rightarrow False

CHAPTER - WATER
CLASS- VIII
ANSWER KEY

Short Answer Questions:

1. Water is called a universal solvent as it dissolves a large number of substances than any other.
2. (a) Solution.
(b) Unsaturated solution.
(C) Saturated solution.
3. A suspension is a heterogeneous mixture of one or more dispersed phases in a dispersion medium. e.g. Muddy water.
4. A colloid is a homogeneous mixture of one or more dispersed phases in a clispersion medium. egg. Milk.
5.

Type of Mixture	size of solute/ elispersed particle
Solution	Smaller than $1 \mathrm{~nm}\left(10^{-9} \mathrm{~m}\right)$
Suspension	$10^{-6} \mathrm{~m}$ ar more
Colloid	Between $10^{-9} \mathrm{~m}$ and $10^{-6} \mathrm{~m}$

6. Water that lathers easily with soap is called soft water.
Water that does not lather easily with soap is called hard water.
7. Temporary hardness is caused by dissolved hydrogencarbonates of calcium and magnesium.
8. Permanent hardness of water is caused by the dissolved sulphates and chlorides of calcium and magnesium.
9. Washing Soda

$$
\text { Formula } \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

10. When sodium oxide reacts with water, sodium hydroxide is formed.

$$
\underset{\substack{\text { (sodium } \\
\text { oxide }}}{\mathrm{Na}_{2} \mathrm{O}}+\underset{\text { (water) }}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \quad \begin{aligned}
& 2 \mathrm{NaOH} \\
& \text { (sodium hydroxide) }
\end{aligned}
$$

Long-Answer Questions:

1. Answer on Page 81, Table 8.1 (See Photograph)
2. Page -83 (see Photograph)
3. HYGROSCOPIC SUBSTANCES: The substances that absorbs moisture from the atmosphere are called hygroscopic substances. For example- Anhydrous calcium chloride $\left(\mathrm{CaCl}_{2}\right)$, Anhydrous magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$, Silica gel $\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)$, sodium hydroxide (NaOH) etc.

DELIQUESCENT SUBSTANCES: solid hygroscopic substances; which absorbs so much of the atmospheric moisture that the solid dissolves in it and forms a concentrated solution, are called deliquescent substances.
For example: $\mathrm{CaCl}_{2}, \mathrm{MgCl}_{2}$ and NaOH .
Both hygroscopic and deliquescent substances are generally used as drying agents in the laboratory.
4. Same as Answer 6 (short) + Page- 88 (See Photograph)
5. Page $-85,86$ (See Photograph)

OBJECTIVE QUESTIONS:
Choose the correct option

1. (b) a supersaturated solution
2. (b) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
3. (c) MgSO_{4}
4. (c) Washing soda
5. (b) Silica gel

Fill in the blanks:

1. Unsaturated
2. Polar
3. Suspension
4. FeSO_{4}
5. Temporary.

True or False:

1. True
2. False, (Anhydrous copper (II) sulphate is non-cystalline but its pentahydrate is crystalline).
3. False, (soft water is suitable for washing clothes).
4. True.
5. False (Magnesium burns in steam with a dazzlingwhite flame).

Id water, the dispersion medium. Similarly, halk $\left(\mathrm{CaCO}_{3}\right)$ or gypsum $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$; flochboard chalk), when stirred in water, give a suspension.
For a suspension, it is not necessary that the difpersed phase be a solid and the dispersion medium, a liquid. The suspensions of

- a liquid in a liquid, called an emulsion (e.g., an oil-water emulsion),
- a liquid in a gas, called fog (e.g., water in air), and
- a solid in a gas, called smoke (e.g., carbon in air) are also quite common.

Fig. 8.3 Muddy water is a suspension.
The size of a dispersed particle in a suspension is much larger than that of a solute in a solution. It is $10^{-6} \mathrm{~m}$ (i.e., a millionth of a metre) or more in diameter.

A suspension is not transparent. And the dispersed particles slowly settle down because, being large, they are heavy too. You
must have seen that the soil settles down from muddy water in a glass.

Colloids

A colloid is a homogeneous mixture of one or more dispersed phases in a dispersion medium.

Milk is the most common example of a colloid-butterfat globules dispersed in water. Jam, jelly, whipped cream and gelatin are also common examples of a colloid.

Fig. 8.4 Jam is a colloid.
Colloids are not transparent. And the dispersed particles do not settle down.

The size of a dispersed particle is in between those of a solute in a solution and a dispersed particle in a suspension, i.e., between $10^{-9} \mathrm{~m}$ and $10^{-6} \mathrm{~m}$ (or greater than 1 nm and smaller than 1000 nm).

The characteristics of a solution, suspension and colloid are given in Table 8.1

Table 8.1 Characteristics of a solution, suspension and colloid

Hydrates

It has been found that whenever copper(II) sulphate is crystallised from an aqueous solution, the crystals have the formula $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$. Similarly, iron(II) sulphate crystallises from an aqueous solution as $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. These water molecules appear in the same number every time and are called the water of crystallisation of a substance. And the substances (generally salts) containing such water molecules are called hydrates.
[The water molecules associated with a substance in a crystal and forming a part of the crystalline structure are together referred to as water of crystallisation.]

A substance containing water of crystallisation is called a hydrate.

Some examples are mentioned in Table 8.2.
Table 8.2 Some common hydrates

Hydrate	Formula
Washing soda	$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Glauber's salt	$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Calcium chloride hexahydrate	$\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
White vitriol	$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Blue vitriol	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Green vitriol	$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Epsom salt	$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Cobalt chloride dihydrate	$\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

The Loss of Water of Crystallisation on Heating

A hydrate, on being heated, loses its water of crystallisation. And it has been observed that it loses its crystalline structure too. You can find this for yourself by doing the following activity.

Activity Take a few crystals of blue vitriol in a dry test tube and heat gently. You will observe that

- the salt will slowly lose its blue colour, turning white,
- the crystals will crumble down to a powdery substance, and
- some colourless liquid drops will collect in the colder part of the test tube.
(Tests, which we will describe soon, indicate that these are water drops.)

Cool the white powdery substance and moisten it with a drop of water. The solid turns blue again. $]$

Fig. 8.6 The blue vitriol crystals turn into a white powdery anhydrous salt on being heated.

What happens during these changes can be summarised as follows.

1. The blue copper(II) sulphate pentahydrate, on being heated, loses the water molecules and changes to the white anhydrous (meaning without water) copper(II) sulphate. And, on treatment with water, the anhydrous salt changes back to the hydrated salt.

2. The crystalline structure of the hydrated salt is lost when it loses the water molecules. Thus, the water of
dissolved hydrogencarbonates of calcium and magnesium. Permanent hardness is caused by the dissolved sulphates and chlorides of calcium and magnesium.

Softening of Water

If the hardness of water is removed, soft water is produced and the process is called softening of water.

1. Boiling Temporarily hard water can be softened by boiling it. When such water is heated, the hydrogencarbonates of calcium and magnesium are decomposed to the carbonates. Being insoluble, the carbonates precipitate out.
 hardness of water is removed by treating with washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$. A solution of washing soda is added to the water, and the carbonates of calcium and magnesium are precipitated.

- Water is known as a universal solvent. It dissolves more solutes than any other solvent does.
- Water is a polar molecule, having a slight positive charge on the hydrogen atoms and a slight negative charge on the oxygen atom. This property helps it act as a good solvent.
- A solution is a homogeneous mixture of one or more solutes in a solvent.
- A suspension is a heterogeneous mixture of one or more dispersed phases in a dispersion medium.
- A colloid is a homogeneous mixture of one or more dispersed phases in a dispersion medium.
rainy season that it gets dissolved and appears to have melted. However, refined table salt does not show this property as it does not contain CaCl_{2} or MgCl_{2}. Similarly, solid NaOH kept open in a beaker starts looking watery within a few minutes. (Remember that after a long time, NaOH reacts with atmospheric CO_{2} also.)

The Action of Metals and Metal Oxides on Water

Many metals and metal oxides react with water. To understand these reactions, we need to have an idea about the activity series. Metals along with hydrogen have been arranged according to their activity in this series. The series consisting of some common metals is given here.

The Action of Metals on Water

Whenever a metal reacts with water, it does so with a view to displacing hydrogen from water. Obviously, only those metals can displace hydrogen from water which are more active than hydrogen, ie., higher than hydrogen in the activity series. We can also understand that the more active the metal (i.e., the higher the metal in the activity series), the more vigorous is its reaction with water.

We will discuss here

Activity
K
Na
Ca
Mg
Al
Zn
Fe
Sn
Pb
H
Cu
Hg
Ag
Au

than hydrogen in the activity series, they do not act on water.

Action of potassium and sodium on water

Among the common metals, potassium and sodium are the most active ones. They are soft and get quickly affected by the moisture (and also oxygen) of the air and are, therefore, preserved in kerosene.

A small piece of the metal is cut with a knife, dried by pressing between the folds of a filter paper and dropped into a trough of water. We make the following observations about the two metals.

Sodium The metal soon changes into a silvery white globule that does not sink but darts around on the surface. A hissing sound is constantly heard. And a yellow spark flies intermittently with a 'pop'.

The resulting solution turns red litmus blue and so it is alkaline.

We infer that sodium reacts vigorously with water to form sodium hydroxide and liberate hydrogen. At the same time, the reaction is highly exothermic and so the metal melts to form a globule.

The hydrogen burns with a 'pop'. And yellow sparks are produced by small particles of sodium. (Sodium imparts a yellow colour to a flame. Throw some common salt, ie., sodium chloride, into the flame of a kitchen stove, and watch the colour imparted to the flame. It is yellow. Also, doesn't a sodium vapour lamp have a yellow light?)

Fig. 8.8 Sodium reacts vigorously with cold water.

Potassium Potassium also reacts vigorously and exothermically with water to form potassium hydroxide and liberate hydrogen. Due to the potassium hydroxide formed, the resulting solution is alkaline and therefore turns red litmus blue. The only difference from the reaction of sodium is that the hydrogen liberated burns with a violet flame. Potassium imparts the violet colour to the flame.

$$
\underset{\text { potassium }}{2 \mathrm{~K}(\mathrm{~s})}+2 \mathrm{HOH}(\mathrm{l}) \longrightarrow \underset{\substack{\text { potassium } \\ \text { hydroxide }}}{2 \mathrm{KOH}(\mathrm{aq})}+\mathrm{H}_{2}(\mathrm{~g})
$$

The action of calcium on water

Calcium is heavier than water and a piece of the metal sinks in it. The evolution of hydrogen starts briskly but slows down soon as the lime produced forms a coating on the metal.) Calcium hydroxide (slaked lime) is much less soluble than sodium hydroxide or potassium hydroxide and makes the solution turbid. The solution is alkaline, turning red litmus blue.

The action of magnesium on water

Magnesium, being less active than calcium, displaces hydrogen from water very slowly at room temperature. However, the reaction is fast with steam.

$$
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}
$$

When magnesium powder is mixed with
water, the evolution of hydrogen starts slowly and stops soon because the MgO forms a coating over the metal particles. But you can verify for yourself how fast the reaction with steam is.

Activity Boil some water in a conical flask to replace the air inside with water vapour. Continue boiling and introduce a burning piece of magnesium ribbon into the mouth of the conical flask. The ribbon continues to burn in steam/water vapour though the nature of the flame changes. In air, magnesium burns with a dazzling white flame, but in steam it gives a smaller, orange flame due to the burning of the liberated hydrogen.

The particles of magnesium oxide falling into the water make it alkaline-the solution or the mixture turning red litmus blue.

Fig. 8.9 Magnesium continues to burn in steam.

The action of iron on water

Though iron is above hydrogen in the activity series, it is much less active than magnesium. Iron displaces hydrogen from water only when steam is passed over the red-hot metal. A black oxide triiron tetroxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$, also called ferrosoferric oxide, is formed.

$$
\underset{\text { iron }}{3 \mathrm{Fe}}+\underset{\text { (steam) }}{4 \mathrm{H}_{2} \mathrm{O}} \quad \rightarrow \underset{\substack{\text { triiron tetroxide } \\ \text { (black) }}}{\mathrm{Fe}_{3} \mathrm{O}_{4}}+\underset{\text { hydrogen }}{4 \mathrm{H}_{2}}
$$

(Triiron tetroxide is considered a mixed oxide of iron(II) and iron(III), i.e., $\mathrm{FeO} . \mathrm{Fe}_{2} \mathrm{O}_{3}$.)

Serial 9\%o.

ISL TERM SYILABUS

$$
\begin{aligned}
& \text { CLASS-8 th PUNJABI } \\
& \text { याठ-4 माड़ चण्डी गेरा याही } \\
& \begin{array}{l}
\text { याठ }-8 \text { रहें माह रा हालरा } \\
\text { याठ }-12 \text { निसेभाध रू }
\end{array} \\
& \begin{array}{l}
\text { याठ }-12 \text { तिरिभ्यव सह } \\
\text { दिmारग्र }
\end{array} \\
& \text { याठ-13 ममाभाइषर मुघर }
\end{aligned}
$$

$$
\begin{aligned}
& \text { याठ }-26 \text { भारोटे } \overline{\text { रेस }} \text { र, ड } \\
& \text { 1. म्रणीट उ०13 fिजिय } \\
& \text { 2. हिमासी या भेंां } \\
& \text { हिरी / पैड०- } \\
& \text { 1. पिता त्ती है किषी गमी दिभाउगका ही } \\
& \text { रागुत्राग धागे दिषद } \\
& \text { 2. भाउगय मग्यैक्वेट रैह दूरी मागी }
\end{aligned}
$$

SUBJECT - PONJABI
CLASS - 8 th
Ch-4 मांक यวडी नेष्रा चाही।
(1) Short ©/ANS.
(3) पण्डी है आेटु याही रिष मा मिग पै?

(मा) पग्री के दिि यही रिसे के दिरे सिरेका रोजा?
 वे हिवदा रोउा।
(घ) पग्री ₹ंजद्रा याही यूपु रग्र द्रही हीटे के री रीजा ?
उ3ं - चग्डी दिखूा यही यूपु र०2 दूी होटे मे चग्री एा मीया z) amil
(म) पण्डी मा रे घेरे हे रेन हि8 विज्ञा उरुा mायिया की ?
Qैंदु०- चुण3ी मां रे घंट रे रेन दि० निण P_{2} याही यी

(د) महीं mख्डिह घारीमा रकभां रां रिहे यू० रमाहांगे?
 हाइीmा रमका रां चु समादोगे।
(2) Long clans.
(8) चग्री के भायह मीर हैठ याही सिसे क्रा रीअ $\frac{1}{3}$ होश

 याही ही नौउह रे हर्वु खग्रा, यठ घोरा पगुी भां

 शि चण्डी e^{2} पप्रे याही रकी उुदा, लत्रिग रने है० लबिद हाडीका रमका रांद गैरागी र० निग है। की याही सी सैद ला गही का mाबह घदीmi रूरां. से बुरात्र माद खीं रन्या।

 20 भि $\frac{y}{}$, याही रे उक्षह हगQरा, आयह?
 नैद्य उनीटा स।
(3) हारा है० zos c, Do it yourselb

 चाही हर के जान रन्न के है।
(3) घोहाँ रे तुा चशाधmi $\rho_{2} 4$ पनु हो सँइत्रा याही सउम र० सहा है।

CLASS - 8th PONJABI
BACK EXERCISES
(2) घं-झिश्रयी चम्रत

(1) घड्-दूशूयी चूमूर
(3) आरम (m) गैराि (ए) तांह
(ल) मर रण्य
(ग) ठत्वら
(2) घारां टी दूरत धररी रूंके किर्य -
(i) मांहा $े$ घौनिका ते डाएिया।
(ii) रूहे प्रै Рिगता गहे गर।
(iii) रुीलां तीग रार मे यहीलां।
(iv) हिया धारवं ही सरार्र प्रगधी पै।
(v) भेदुmi रे गहीmi दिर सहध चये याही।
(vi) हो याही भौह Pिरें उग नु गे।
(vii) 2233 हो Pिजमां ही याइह रे।

द्रेगूर $=$
 शेंभी, यखेठी, घोहोमार
H.W-Write मृघर-m天a, घर घहती, यूरू/ $\frac{23}{\circ}$
on your note-Bale. Rest of wrok on you Book.
गखराउमर Pिجिलात के हैंगडा यम्ब
Do it Yourself

$$
\begin{aligned}
& \text { CLASS - } 8 \text { th } \\
& \text { SUBJECT - PUNJABI } \\
& \text { याउ - } \delta \text { तहें मांद रा हामारा }
\end{aligned}
$$

Shorl Q/Ans
(3) येश्त हे मेगी-याया री रेम रंरे मर ?

पै30- यरत रे चाया गेग़ी के ग्रधत्ती हैकह शा रेम खरे करा

 घहाएिm मी?

घहाणका मी।

(म) पेरक्त दे डुकरे याया कार छायगे रिन्दी यूटा हो

(3) पैश्न रे आयहे याया है शूम्रा घकडी ज्ञाह रैं रिद,

Hिका?

(द) चैशत के आपईे संमी याया राू री यूह रीजा?

Long C/Ans.
(3) पेश मित नित्र भेखा भी ? उु भायहे रैमउं रiक रिषे शे रुर त्रा मिर मी ?

 सैर 又० विग की। कर आयदे रूता सान भमृं त्रहां माइ भर्धि ता Рिग ही, ग्रो रैमते घारा मैथाधिंड दो बुला बैसे सी षगेरह मी।

 री ग2n दे देरी है? टि उ० नेग्नी का से वाष्रीमा

 चैमे चुरे में क्षि राइ यग्रा पैटी टर हैरै। गै ड़े डैरे उगहां दी दोम हो रेख हो। है ग्ताव ग्पर्टे गJ भगीर ढीम टा गी रेहा चैंट । यका ऊी कदरा 12 रें. भगीरा सउत दै गिmा के रूर ग्रा गिmा हिम दरें

(ए) मुग्ती3 भीसद $े$ चेन्त है री टिमां ? थेशत्त

 y मारा ही। मेमी ठैर रोगे $12 f_{2}$ रहें माज रोलों
 अरम्थीmा ता मर्टीका गर में तहा गार अमृगी कीं।
 2े मराहागा। मैंते रहें मैघाएिक सी पैरा कीे है, मैने माद र PिB याया।
प्रमुनम) चेश्त याया हे मैरी़रंट रा रूमी भायहे भाय से © 330 मेर गिग की 1 रेहें? याया रा भौखहीकर में रेखे गु पैरिmा है। से में. मरगेग मैघाप्रू हो करे सीँट का रे्रा ऊां के० भाजह रेडु पूई चैमे हैरे दरी रूमूर घमडी रा ज्ञांटे 3 मौरीदीय रा रेरा। पित्रा दही में रमृวहान गे।.
$8^{\text {th }}$ Punjali
याठ－ 8 万रें मांद रा हामसरा
Back Exercises
（2）घग हरूर्यी यूमुक－（B）लिंची．（m）तहे माध रा टिर
（ह）मुधनी ची（म）भायही गेर दुं वा का दिगरा
（J）माधाई（र）वान भाइ
（3）दारा P气z $\frac{\lambda^{2} 3}{}$－Do it youself on note Bakk．
（4）सादी साया उँच－
（B）च्रुम（कn）चौत्र गक्षां
（ए）छारว
（म）टम 3 भैम（J）रमुग्हान
（5）ठीर／ग़्रु
（i）x
（ii）\times（iii）
（iv）$\times(\mathrm{V})$
कामा मोड fहmखर्र
（1）（B）साम ऊाह
（m）मूगहग
（E）भितु
$\begin{array}{ll}\text {（म）मिउन } & \text {（د）भौरही हैं }\end{array}$
（2）．मुअव्या है भवष श्रेख
（i）रुरमाक रनाहीटा
（vi）हया－स्वारे गॉझा मैख्ट
（ii）ग्मामरक भुउमध
（vii）उधार रे वेद्धा
（iii）टैम शुठिक्ष
（Viii）च्घ－च्या राषिम रग्रा
（iv）पैशा होमारा रया
（ix）घुग रेगाद्ध
（v）माजही गॉद के mके गिि्धा
（x）घอ3 गामी यै屯⿱夂⺀一
（3）गह शिसे मृघरा है मूप रकरे दिसे－

ษ્રमी
 Do it Yourself．

$$
\begin{aligned}
& \text { CLASS - 8th } \\
& \text { SUBJECT-PUNJABI } \\
& \text { चाB- } 12 \text { निमेमांग रह }
\end{aligned}
$$

Shot B/Ans.
(3) येत्षाघ रिशु यो पग्री आसहा हुरी है ?

(अु) रूी योत्राध से त्रे शिऐ किगी रानु रके मर?
पै30- रही उै मा रे, भुगाहว खैरेे, घैठइां रैठरे मर।
(ए) ममिकां टी टे प पेँ री रेह पै, रिहें ?

(म) इहिरन P ए तिरे मर्गेग हाशा मैदा मी?
 गीలmi पैEmा मी।
 रुचओ झी रे यझ्भाएmा मी।

(జ) माशे पोताध रे कमा मुश्र खर दरी री रण्या यदेगा P_{2} कों चगध र्रेटे गर, शिरां हुं घरे।

Long O/Ans
यूमु(3) मासघान हैं री यदरे के सर मेही चै गिभा। केखर आरुमाब रमे रिमरी सह गर के रिहें?

 था शे घट्वगा। रमें चैँ ही हद गू, पउभी हैर भाप

दिलामी सी ज्तरकर हैठ कभा वे गरायन कहीं माय
 याह-यीह 3 कमे आयहा ने गा m $\begin{aligned} & \text { आे आयहे चैत्राघी }\end{aligned}$ मुकिारह हे उैदरे ता गे गां पर

 सांटे हरू। उितरी भां के छकतत्टे दूरों हो रॅपदे मीन्री वे यद़ाएका मो।

 मैरे Pरें यड़ाडिmi पै, में दररे मिग्रु खागां उ सेचिरे० हितीरीmo घहरे सह चैका रमाडागां। मैं उदे ढैश रंांग गेसागा। में उद्य ग० हूप रे हागा त्रिकरी会 गैरा पै, "

 माद रं एित् mकीं उेनी-डूी मिँस जाहागे। रदिरग है

 दियां ते दरारे श्रघम्समी चु़ी उिमरे मेर० मुर रिजी

(J) टहिट हुगो र्तेताया टी भाओ गाइड हेख रे ग्रेषर री मिरेग लिरी प।
 घरिद，याह－यीह，रमे mik का दिकाग एूरे मारे चेताधी टर्मे पे mयनहिड हागीरा पै। सो मसी गेडा खाडे़े पै उा येताध मे उभा मूरु इक कूरी mं गिर भगं कारीए，यन－्यว ता $े$ हि मेरेम चड़ाराषीटे l_{2} मे अगघ गैरे कर， पिरां ${ }_{3}$ 部।

रगह्टी सी मिँचम्भा－
भूग्ष घाग मिगा：－शिन राहो कें माद्रि
मिषmi मिद्यी है दि क्षतुगी कगीं रि गे हयोमां हिसट्ट हाडी कौत़ मु माधे शाउ नी चैत्रे। रहो
 यैंश ड1 टिम कर्य गे रमरटी कीत्र माना ऊों 包命।

ममादागपर मृधर：－write and Leam ममाओाम्षर मघर 26 to 52

CLASS - 8th
SUBJECT - PUNJABI

Back Exercises
(2) घ?-ु हरश्यी यूमन
(B) यऊम री (मे) मुग्टे मगेग धाशा (ए) से, आाथी, र्पिपद

(2) निबेंटी รम हवा

(4) पाइी खाहा करे-

(5) गों त्ता रों
(B) रणी (ल) कीं (ह) गं
(अ) रुज
(コ) गi
उांगा भाते द्वभारमंन

(म) पूक्षिकडा
(J) यุวฉ
(2) आधां हो मारमहे केका हो रिशल किखा-
(B) PE̊रद्या8र

कर्द
(ल) भाम और
(ए) 3133182 औiz
(\bar{x}) हुठ्युचाहर भiz
(ग) सान ऊों
(3) साही दाय के
(i) है
(iv) भवष

गहराउमर गुीदulmi $\frac{1}{3}$ जंगुा पग्स Do it Yourse ff

CLASS - 8th Punjalui
Ch-19 aगु मुधरों या सां हिरें मूरर
Back Exercises
उदर Gैउ लँगे (2) रा निभाक अवाजे।

(3) ६ॅपायाग (2) मारागगी (स) maोड
2. (i) \&ीर (ii) गद3 (iii) गद3 (iv) ठीर
(v) तौर (vi) ठीर

(3) गวमी/ उामउर पै।
(ल) गमरन ही माउा रीद्वगी पै।
(L) सरमभी3 घण 3 तिमारा गाइइकी y ।
(म) मदरी3 र्ञाय उारू2 पै।
(J) मेगू दहाग गेगा f।
(2) मौदा ही है० रेमह० पै।

(B) गъみडोओi
(m) चग्रुपराम
(E) लहुसर
(घ) टरमाद
(ว) मुग्थंद
(2) गचर
(स) उग्धाह
(बi) चैसाइ⿱

std.: 8 th.
Findi ITer...
पाठ 2 तीच्वरीलड़की
SHORT AMS.
प्रा- निशा ने गों से क्यो काहा कि उसके रूल जाने से काईे रून्चजहोंतोल।
उतरा-क्यीकि वह सरकारी स्कूल में पढ़ती थी और किताबे भी प्ररानी माँग कर लाती है।
प्रमे निशा की बड़ी बहुन का स्वूल कोों बंद करखा दिया गया था?
उतरा-क्योंकि बबलू को अंकरजी स्कूल में पदानाने और उसकी व्पू शन के लिए पैसे चाहिए थै।
पो एन. सी. सी० कैंव का जीवन कैसाए था?
उन्न- सुबह मैदान में परेड, दोपहर में पेंनिग शा की मुकाबले और रात को मनोरंजन के कार्य क्रम होते थे।
पम 4 निम्मो औरनिशा दरवजज़ा खोलने पर क्या देखखतर सन्न रहगई?
उत्तरान बाबू जी को बरांडे मे बेंडोश पड़े देखकर वह दोनों सन्न रह गई।
पस 5 डॉन्चौचरी ने ली़ी चोपड़ा को निशा के बरि में क्या बतापर?
उत्तरा-इस बच्ची की होशियारो की वजह से आज शार्मांी की जान बची है।
किसने, किससे कहां?
pg: 18
उतरा-1) निशा ने माँ से कहा
2) निशा ने माँ से कहा।
3) डॉक्टर ने निशा से कहा।
4) डौक्टर चौधरी ने ती चोपड़ा से क्ला।
5) भी च्रोपड़ाने निशा से कहा। दौर्ज उतीय
LONG A $\triangle S$.

प्रदे वह बेटा है कुलन्दीपक है। माँ के इस कथन से उसकी किस मानसिकता का पता चलता हैं।
उत्तरा-इस युगें भी उसकी माँ के विचार पुराने है वह बैटे को ही महत्व द्वेती है। उसके लिए बैटा हो खानदान का चिराग हो ता है। बेटी नही।

अरी, पढ़ना - पढना क्या लगा रखा है? कौन सी अफसर बनना है तुझे पे पल्डा-चौका और जर सँवारना यही काम है लड़कियों काँ, इस बात से हो पता चलता है कि माँ लड़कियों की शिक्षा को महत्व नही देती।
प्री निशा स्थल में अपनी मैडम के सामनें कोो रो पड़ी
उनर मों की डाटट खाकर भूखी स्कूल चली गई। निशा मेड से अपनी प्रशेसा संनकर और उनकी सहानुभ्रति पाकर उनक सामने रे पड़ी।
प्रम जर के सामने लगी भौड़ को हटाकर जिशा ने क्या किया? उनर- जर के सामने लगी भीड़ को हटाकर निशा ने पास के डॉक्टर को बलवाया। पिता को अस्पताल ले जाने का प्रबन्ध किया और पिता जी की छाती की मालिश करने लगी।
प्रे ऐसां क्यों कहा गया है कि निशा के पैर में तो मानो वक्की लग गई हो ?
उतरा-अस्पताल से जर, जर से अस्पताल। दुकान से दवाईयाँ खरीदना, समय पर दवाईयाँ देना, जरन्रत पड़ने पर नर्ष और डोक्टरें। की जिम्मेदारी निशा ने अपने ऊपर ले ली और बरूबी सँभाली।
पृर 6 यह कहानी समा जकी किस बराई कीओर संकेत वारनी है?
उत्तरा आज भी हमारे समाज में लड़कियों की अपेद्धा लड़कों को अधिक महत्व दिया जाता है। हर क्षेत्र में लड़कों की बराबरी कर रही लड़कियाँ आगे बढ़ने का रास्ता स्वय खोज लोती है।

भाषा ज्ञान
(1) का और

खं) तो
गो क्योंकि
क] पर
b) तब

च) जो

2)
(क) पर

ब) के लिए
3 हिंदी पर्याय

मस्तिप्क
हस्ताक्षर

ङ) की
च) से, का
(द) को
ज) में
\qquad
4) सिक्त स्थानों में महावर लिखिए वाक्य पूरे कीजिए।

क) पैरों में चक्की लग गई है।
ख) रफू चक्कर हो गए।
ग) खिल उठा
(घ) कोल्डू के बल
ड.) सन्न रह गया।

5
Pg. 21
डॉक्टर हॉल फ्रॉक कौलोनी
कॉलेज द्रॉली चौकलेट औफिस
पाठ ${ }^{5}$ मित्रहो तो रेसा SHORT ANS.
प्रो दुर्योधिन की सभा से लौटते समय कृपण निराश क्यें थो?
उत्तरकृषण जी की निराशा का कारण टुर्योधनन का शांति संदेश ना मानना था।
प्रे कपण ने अनर्य और अदर्म किसे कहा है?
अस्र। पर्थ (अर्जुन) और कर्ण का एक दूसरे के यून का व्यासा होना अनर्थ और अधर्म कहा है।
 सैंप दिया। उसे एक सूत ने पाल पोस कर बड़ा किया। यही बालक कर्ण था।
प्री कर्ठ तो ग्लानि और लांछना क्यों भोगनी पड़ी?
उनरम सूत द्वारा पाल पोस कर बड़ा करने के कारण कर्ण को क्षत्रिय राजकुमारों का सम्मान नही मिला।

दीर्ज उत्तरीय LONG ANS.
प्रम कृष्ण कर्ण को पाडडवों के पक्ष में क्यो मिलाना चाइडे थे? उनरा कृषण कर्ण को वररता को जानेे थे। पंडयों की जीत निश्चित करने के लिए कृष्ण कर्ण को पांडवों की और मिलाना चाहते थे।
प्रे कृषण ने कर्ण के निन गुणों की पर्शंस्सा कौ है?
उत्तरा-कृष्ण ने कर्ण के बल, बददृधि और पराक्रम के साथ ही उनके दानी और गरीबों का रक्षक होने के गुओं की प्रशेंसा की है।
प्रा- कर्ग ने कृषण को दुर्योध न का साथ $न$ छोड़ने का क्या कारा बताय? उत्तरा जब उसे चारों और से अपभान, लांछना मिल रह था, उस समय उर्योधन ने हाथ बढ़ाकर सम्मान बढ़ाया। इसी कारण उसने अपने परम बंधु का साथ नही होड़ा।
4 कृषण ने ऐसा क्यों कहा-" क्या ऐसा वरित्र संभब है। ओह।
मिन्र हो तो ऐसा। मिन्न हो तो ऐसा।
जो व्यक्ति अवनी माता कुंती को अपनी माता और पांडवो को उत्रा जो व्यक्ति अवनी माता कुली को आदर-सम्मान मिल सकता था
अपना भाई मानने से ही उस को आदे पर उसने सबका व्याग कर दिया। कर्ण के इस ण्यवहार को देखकर कृषण हैरान था।

पाठ 50 मित्र हो तो एसे भाण ज्ञान
1 विरमन चिन्द
क) कृष्ण ने फिर कहु।, "इस युद्ध को रीक दी कर्ण । रोक दो इस भीषण नर संहार को।
ख) कृष्ण ने भावपूर्ण स्वर में कहा, "कणी! क्या यह विनाशक करी उद्च हो कर ही रहेगा? मेंने कितना प्रयत्न किया पर दुर्योधन ने मेरे किसी आंमह अनुरीध को नही माना"
2क) निम्नलिखित उपसग्गो से दो-दो शबद बनाइए।

1) अ = असव्य, अनाथ, असफल

ह) कु = कुमार्ग, कुपुत्र, कुकर्म
3) दर $=$ दुर्लभ, दुर्जन, दुगम
4) अप $=$ अपान, अपराथ, अपवाद
5) सम् = सम्मान संबंध, संहार

ख) दूत' प्रत्यय के बने शब्द पाठ से छाँटकर लिखे। वंचित \Rightarrow कलंकित, पुलकित, इंगित 3. एक शणद लिखिए।

पाठ: 7
द्मारे पझोसी
SHERT ANS. \qquad
प्री पदीय ने अपने मिनो के दुख में शामिल होते हए किस बात को पाका सहात की?
उप प्रदीप ने कहा कि जब भी तुम कोई गड़बड़ करोगे शंकर साहब तुम्हरे घर वालों से शिकायत कर सकते है।
प्रे शंकार साहबने बस-स्टाँप पर बर चों को क्यों डाँटा?
उतर बच्चे समय से बस-स्टापप पर नही आते थे इसलिए शंकर साहब ने बच्चों की डोटा।
प्रे रविकी बहन ने शंकर साहब को प्रभावित करने के लिए क्या किय?
उनर उसने शंकर साहब पर प्रभाव डालने के लिए बाहर सीढ़यों पर बैठ कर पढ़ने लगी।
पूरे रवि को किस बात की चिता खाए जारही यो?
उत्तर टेस्ट में आए कठिन प्रश्नों को देखकर रेव को यह पिंता खाए जा रही थी कि कहों वह रेल न हो जाए।
5 एक वाक्य में उत्तर लिखिए:-
क) पापा ने कोजित होकर बच्चो से क्यक्या कहा? कि पड़ोसी तुम्डरी पंसद से नही आएगे।
ख) रवि के साथ आए कुत्ते को इन दोनों ने काठँ देख रबि के साथ आए कुत्ते को इन दोनो ने कहा देरा था
रवि के साथ आए कुत्ते को इन दोनोंने गलियों और रणीच मेंपूमते देखा।
ग) बज्तों को टेस्ट की कॉरी लिलना अगिन परोत्रा जैसा क्यो था? उनको टेस्ट की कॉयी मिलना अगिन परीजा इसलिए लग रहा था क्योंकि बचने टेस्टमें फेल हो गए थे।
घा शंकर साहव क्या देखकर हड़बड़ागए शंकर साह ब बाड़ के पास खड़ रवि और उसकी बहन को देखकर हड़बड़ा गए।

Long Ans. दौनी जनर
सो बचन्षो के समने कीन सी विक्ट स्थिति उत्पनण हो गई यी?
अनरा (1) शंकर सर बच्चों के पड़ोस में रहने के लिए आ गए थे।
(2) बच्चे उनसे बहुत डरते थे।
(3) उनके पड़ोसमे रहना बच्चों के लिए विकट समस्या थी।

प्रशे बचे बस स्टाप पर जाने में देर क्यों कर ${ }^{2}$? चरी?
जतरा सर बच्चों से उनके अंको के बरि में पूले थे। कम अंक आने
पर उन्हें डॉटटे पर उन्हें डाँटते थे इसलिए बच्चे डर के मार देर से पहुँचते थे।
प्रो-रविनेंस्सा क्या देखा कि उसे कहना पड़ा- ' भगवान, बच्ताओ? उसने स्थि क्यों कहा?
उत्तर-शंकर साहब गेट खोलकर बच्चों के घर के अंदर दाखिल हो रे थे। यह देखकर रवि चिल्या भगवान बचाओं।
पूरे मादुरी ने कच्ता से बाहर जिकल कार रवि और उसकी बहन से ऐेसा क्यों कहा कि तुम दोनों ने उन्टे नाराज कर दिया होगा।
उत्तर- टेस्ट में आए कठिन प्रश्नांकी देखकर माधुरी ने रवि और उसकी बहन ने कहा कि तुम दोनों ने शंकर साहब को नारजज कर दिया होगा तभी उन्होने कठिन प्रश्न दिए।
पृर ऐसा क्या था जिसे देख कार रवि की बहन को लगाकि वह स्वर जा देखरही है।
उत्तर शंकर साहब को कुत्ते के साथ खेलता और हसँसता देखकर रवि की बहन को लगा कि वह स्वरन देख रही है।

भाषा जौन

रेन ड़- सड़क पकड़ जड़ मुड़ना
दू सीढ़ी पढ़ना बढ़ना चढ़ना

ख) द्विरव व्यंजनों से बने तीन-तीन शाण लिखिए।
ट्त-कत्ता गत्ता पत्ता उत्तर
ट्ट-पट्टा छुट्टी सट्टा पट्टी
ज्ज-सज्जन सजजन लड्जा छड़ा
3. देराज शबदों की सूची बनाइए। नुक्कड़, खाना होना, अति पीड़ादायक, जाँच-पड़ताल
4. वाक्यों में 'कि' अथवा को' का उचित प्रयोग करें।

| क की | डे की |
| :--- | :--- | :--- |
| य कि | च) कि |
| ग कि | छो की |
| ज की | ज) कि |

```
पाठ 2 लीसरीलड़की
शब्द \(=\) अर्थ
सँवारना \(=\) सजाकर रखना
दस्तखत \(=\) हस्ताक्षर (signature)
इजाजत \(=\) आज्ञा लेना
तपाक से \(=\) जल्दी से
बढ़ावा देना \(=\) आगे बढ़ने में मदढ करना
सुबकियाँ \(=\) रोते समय हिचकी लेना
हताश \(=\) निराशा होना
प्रशिक्षण \(=\) ट्रेनिंग
स्पर्धा \(=\) मुकाबला
आनंदविभोर \(=\) बुतुतराशा होना
बस्बी \(=\) अच्छी तरह
सर्तकता \(=\) सावधानी से
होनहार \(=\) अधे गुषों वाला
```

पाह: 5

तिर साण्द
आदान ददान $=$ लेना-देना

$$
\text { नाहकीय }=\text { नाटक जैसा }
$$

$$
\text { जाइाकाशः }=\text { नष्ट कर देने वाला }
$$

$$
\text { आवह अनुरोप्प }=\text { विनय और हार्थना }
$$

$$
\text { कदावित }=\text { शायद }
$$

$$
\text { सालणा }=\text { पीड़ा देना }
$$

$$
=\text { अर्जुन }
$$

$$
=\text { छोटा भाई }
$$

$$
\text { सहोदर }=\text { एक हीमाँ की संतान }
$$

$$
\begin{aligned}
\text { लीला } & =\text { खल } \\
& =\text { ने }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { गयेप } & =\text { बड़े } \\
& \text { - }
\end{array}
$$

$$
\text { विधाता }=\text { भगवान }
$$

$$
\text { अदवितीप }=\text { जिसके समान दूसरान हो }
$$

$$
\text { पुरूषार्थ }=\text { पौरूष }
$$

$$
\text { परम }=\text { सबसे क्षेप्ठ }
$$

$$
\text { निस्सहाय }=\text { वेसहारा }
$$

$$
\text { वंचित }=\text { धोखा खाए हुए }
$$

$$
\text { उद्भट }=\text { असाधारण }
$$

$$
\text { कूर }=\text { कठोर }
$$

$$
\text { मंडित }=\text { सुशोभित }
$$

नर-रत्न = मनुखयों में श्रेष्ठ

$$
\text { अवश }=\text { बेबस }
$$

लोकभय = संसार का डर
तंरंग = नहर

$$
\text { अभिषेक }=\text { स्नान }
$$

अभय = निडर

$$
\text { आतंक }=\text { डर }
$$

अदेय = जो दिया न जा सके
भौतिक संपदा: धन
औँकना = अनुमान लगाना
अभिभत = विचलित

पाहः 7 'हमारे पड़ोसी'

$$
\begin{aligned}
& \text { शब्दु उर्थ } \\
& \text { घुँघले - जिनमें से कुछ साफ़ न दिखाई दे } \\
& \text { स्तब्य - गतिहीन } \\
& \text { अविश्वासपूर्वक-जिस पर विश्वास न किया जा सके } \\
& \text { निर्देश - आज्ञा } \\
& \text { जड़वत - पत्थर की तरह } \\
& \text { आंतक - डर } \\
& \text { कड़ी निगाह - पूर कर देखना } \\
& \text { विकटता }=\text { भथानकता } \\
& \text { डपटकर = डाँटकर } \\
& =\text { कोना } \\
& \text { खाना होना }=\text { चलना } \\
& \text { पीड़ादायक }=\text { दुखभरे } \\
& \text { अप्षिय }=\text { बुरे } \\
& \text { ऊँच पड़ताल करना }=\text { पता लगाना } \\
& \text { अनकहे }=\text { जो कहे नही गए है } \\
& \text { मयने }=\text { अर्थ } \\
& \text { समीकरण = गणित की क्रिया } \\
& \text { अठिन परीक्षा }=\text { कठिन कार्य } \\
& \text { विशेषज्त }=\text { विशेष रूप से जानने वाला } \\
& \text { जिश्वासावश = उत्सुकता के कारण } \\
& \text { हल करना }=\text { सवाल का उत्तर निकालना } \\
& \text { काल (Tense) }
\end{aligned}
$$

प्र-- काल की परिभाषा, भेदों के नाम वर्णन तथा उदाइरण दीजिए।
अरु किया के जिस रूप से काम के करनें या होने के समय का पता चले उसे क्रिया कहते है। जैसे :- जाता है, गयाथा, जागा आदि। काल के तीन भेद होते है।

1. वर्तमान काल (Present tense)
2. भूतकाल (Rast tense) $3 \cdot$ भविष्यत् काल (Future tense)

1 वर्वमान काल:-जिस रू्प से काम के चल रहे समय का जैखे पता चले उसे वर्तमान काल कहते है।
जैसे:-1) रतन खेल रहा है।
2) रजनी खाना खा रही है।

2 भूत काल 5 जिस रूप से काम के बीते हुए समय का बोध जैसे हो उसे भूत काल कहते है।
जैसे:- D मैने खाना खाया था।
2) मैं कॉलेज गया था।

3 भविष्यत कालएजिस रूप से आने वलि समय का बोध जैसें।

1) मैं आज स्कूल जाँऊगी।
2) नीर कल शिमला जाएगी।

निबंध $F(1)$ समाचार पत्र के लाभ डानियाँ
(2) विज्ञान के बढ़ते कदम (पेज़ 255,256)

पत्र:- संपादक से संबधित
अपठित गंद्याश

India in the Eighteenth Century

Time To Learn

I. Fill in the blanks:

1. Murshid Quli Khan became the independent ruler of Bengal and shifted his capital to Murshidabad.
2. Chin Qilich Khan founded the Asaf Jahi dynasty in AD 1724.
3. Haider Ali was the ruler of Mysore.
4. Banda Bahadur was the leader of the Sikhs after the death of Guru Govind Singh.
5. Balaji Vishwanath was the first Peshwa.

III. State whether the following statements are True or False:

1. The office of the Peshwas was always hereditary. False.
2. In the Third Battle of Panipat, the Marathas fought with the Rajputs and the Jats. False.
3. The later Mughal kings were able rulers.

False.
4. Safdar Jung was the first Nizam of Hyderabad. False.
5. Jai Singh built an observatory (Jantar Mantar) and Pink City (Jaipur). True.

VI

 GIVEREASONS
Answer: 1.

The Marathas had established a Maratha Kingdom during the reign of Aurangzeb. They were very powerful and with time and with the decline of the Mughals would have proved worthy , opponents to the emerging British empire but the third Battle of Panipat (1761) sealed their fate. Ahmad
Shah Abdali, an Afghan . invader gave a crushing defeat to the forces of Peshwa Balaji Baji Rao. It put an end to the Maratha power and their dream of ruling India. Thus, the way was proved for the British East India Company to gain power and become supreme.

Question 2.

Independent states were formed in the 18 th century.

Answer:

The later Mughal rulers were so weak that they could not hold the provinces of the empire together. These provinces were under Governors who were always engaged in wars. Gradually, they took advantage of the situation of misrule and misgovemance by the central authority and declared independence.Thus, Bengal, Hyderabad, Awadh Rohikhand became independent one after the other.

Question 1.

Identify him.

Answer:
 Maharaja Ranjit Singh.

Question 2.

How did the unite the Sikhs in Punjab?

Answer:

Maharaja Ranjit Singh brought the whole area west of River Sutlej under his control and established the Sikh kingdom in Punjab. He signed the Treaty of Amritsar (1809) with the British which confirmed his conquests and established his sovereignty over the terrioty west of Satluj. It was only after his death in 1839 that the British gained control over the Punjab.

. State whether the following statements are True or False:

1. The office of the Peshwas was always hereditary.

False.
2. In the Third Battle of Panipat, the Marathas fought with the Rajputs and the Jats. False.
3. The later Mughal kings were able rulers.

False.
4. Safdar Jung was the first Nizam of Hyderabad.

False.
5. Jai Singh built an observatory (Jantar Mantar) and Pink City (Jaipur).

True.

MATCHING:-

1. Nizam-ul-Mulk
2. Shivaji
3. Tipu Sultan
4. Gaekwad
5. Holkar
6. Scindia
7. Bhonsle
8. Peshwa
9. Ranjit Singh
(b) founded the state of Hyderabad.
(c) founder of the Maratha power.
(a) Tiger of Mysore.
(f) Baroda
(g) Indore
(h) Gwalior
(c) Nagpur
(i) Poona
(d) united the Sikhs on the west of river Sutlej.

IV. Answer the following questions:

Question 1.

Write in brief the causes that led to the downfall of the Mughal empire.

Answer:

Causes that led to the downfall of Mughal Empire were
(a) Weak successors: After Aurangzeb's death the Mugh empire started declining. His successors were weak are were toys in the hands of nobles and Governors. The lacked the administrative skills of their predecessors.
(b) Internal Rivalry: The nobles and Governors belonged different groups and were always engaged in const? struggle for power. This hampered the growth of the emp
(c) Crisis in Jagirdari and Mansabdari system: The Mugh introduced the Jagirdari and the mansabdari systems, smooth running of their administration but they only prov to be the cause of the decline of their empire.

Question 2.

When and between whom was the Third Battle of Panipa fought? What were its results?

Answer:

The third battle of Panipat was fought in 1761 between Ahmad Shah Abdali, an Afghan invader an Peshwa Balaji Baji Rao. The Peshwa suffered a crushing defeat and this put an end to the Maratha power.

Question 3.

Name the first independent Nawab of Bengal. What were his achievements?

Answer:

Murshid Quli Khan became the first independent Nawab of Bengal. He established an efficient administration and effectively organised the revenue system. He also started the new system of land revenue collection, on the basis of contracts, known as Ijara system. He reorganised the zamindari for which he is will remembered in the history of Bengal.

Question 4.

When was the Battle of Plassey fought? What effect did it have on the position of the English East India Company?

Answer:

The Battle of Plassey was fought in 1757 between the British and SIraj-ud-daulah in which the English defeated the army of Siraj-ud-daulah. From then onwards the English East India Company functioned as king makers in Bengal politics. Finally, the English established their full sway in 1765 when Robert Clive set up the Dual Government in Bengal.

Question 5.
Who was Haider All? Discuss his achievements.

Answer:

Hyder All was the ruler of Mysore. He started his career as an ordinary soldier in the Mysore army. He won many battles against the Marathas, the Nizam of Hyderabad and routed his enemies in two consecutive Anglo-Mysore Wars.

Question 6.
Which ruler was known as the Tiger of Mysore?

Answer:

Tipu Sultan, the son and heir of Haider Ah and ruler of Mysore is known as 'Tiger of Mysore.
II

$$
c h-4
$$

India in the Eighteenth century
I Tick (V) the correct answer

1. Chin Qulich Khan
2. Afghans
3. Bahadur Shah I
4. 1739
5. Sambhaji

All the keywords will remain same as given in the book.
$\frac{8^{\text {th }} \text { History }}{c h-5}$
Trades to Pules
I Tick (r) the correct answer

1. Portuguese
2. 1757
3. Awadh
4. Robert clive
5. Wellesley
π Fill in the blanks.
1: England
6. Pondicherry
7. Captain Hawkins
8. Bombay
9. Carnatic wars
10. four, Anglo mysore wars
11. 43 years, Angl -maratha
12. Awadh

III matching :-
$1 .-e$
$2 \cdot-d$
3. - a
4. - f

5 - 6
6. $-C$
7. - ${ }^{\prime}$
$8:-j$
$9 .-h$
$10-g$

IV True or False

1. True
2. False
3. True
4. True
5. True
6. False
7. False
8. True
9. False

Question 1.
 When and how was the English East India Company formed?

Answer:

It was formed by a group of English merchants. The company received a charter from queen Elizabeth I of England on December 31, 1600. Sir Thomas Roe got a farman from Jahangir in 1615 to establish a factory at Surat. The English traders from the very beginning tried to combine trade with diplomacy. The English set up factories at Surat, Agra Ahmedabad, Broach, Hooghly, Mqsulipatnam and Madras.

Question 2 .

What were the main reasons for Anglo-French rivalry in India?

Answer:

The French cherished the ambition of French Empire in India. But this ambition was challenged by the English. This led to Anglo-French rivalry and the three Carnatic Wars. The French were defeated and the English became Supreme in the South. From this base the English conquered the rest of India.

Question 3.
What were the causes of Conflict between Siraj-ud-daulah and the English?

Answer:

The English built factories at Kassimbazar, Patna and in Bengal. In 1756 Siraj-ud-daulah came to power. The company had started to fortify their settlements in Bengal. Siraj did not like it. Siraj attacked and occupied the Fort William in Calcutta in 1756. The British defended under Clive ąd Nawab was forced to come to terms. Nawab had to vacate Calcutta and also pay indemnity to the British. Clive hatched a Conspiracy against the Nawab. The forces of the Nawab and the British East India Company fought on the field of Plassey in 1757. The Nawab was defeated, captured and killed.

Question 4.

Describe the circumstances that led to the Battle of Buxar.

Answer:

Mir Qasim objected to the misuse of trade regulations. The abuse of duty free inland trade adversely affected the revenue which was the only income of the Nawab. Mir Qasim took other measures for consolidation of his administration, (a) training his army on European lines (b) transfer of treasury from Murshidabad to Munghyr. The British did not like these administrative steps. Under these circumstances, Nawab Mir Qasim challenged the company and a war broke out between them. The Nawab was defeated and fled to Awadh. He formed an alliance with Shuja-uddaulah, the Nawab of Awadh and Shah Alam, the Mughal Emperor. The three forces met the British at Buxar on October 22, 1764. This battle is known as Battle of Buxar. The British emerged victorious. They made Mir Jaffar the Nawab of Bengal, the second time. The defeat in the battle of Buxar finally sealed the fate of Indian rulers and made the English the supreme power in India.

Question 5.

What were the causes of the Fourth Anglo-Mysore War? What were its results?

Answer:

The Treaty of Seringapattam was short lived. Lord Wellesley, the Governor General wanted the ruler of Mysore, Tipu to accept the Subsidiary Alliance but Tipu refused to do so. Tipu sought French help. The British feared that the French might land in support of Tipu. So in 1799, the British went to war against Tipu. The Nizam joined the British but the Marathas remained neutral and the French support never came. Tipu was killed in the battle on 4th May 1799.

Page No.
Question 6
Who was the Governor-General of India during the Second Anglo-Maratha War? What was the significance of this battle?

Answer:

The Second Anglo-Maratha War was fought when Lord Wellesley was the Governor General of India. In 1803 Baji Rao II signed with the English East India Company a Subsidiary Alliance known as Treaty of Bassein. As a result the English installed Baji Rao II at Pune and helped to drive out the Holkars. The Maratha chiefs Scindia and Bhonsle refused to accept the system of Subsidiary Alliance and declared war against the British. But the British defeated the combined forces of Scindia and Bhonsle. They were forced to enter into the Subsidiary Alliance with the English. They ceded the territories of Ahmednagar, Broach, Cuttack and Balasore. This war gave a blow to the power and prestige of the Marathas.

Question 7.

Why was the Third Anglo-Maratha War fought? What were its results?

Answer:

The Third Anglo Maratha War was fought in (AD 1817-1818) because the Maratha chiefs were feeling humiliated after signing the Subsidiary Alliance with the British. Peshwa Baji Rao II began to make plans to unite the Marathas against the British. This war was fought during the Governor Generalship of Marquess Hastings. When Lord Hastings became aware of Baji Rao's plans he forced him to sign the Treaty of Pune in 1817. According to it, Konkan was ceded and Baji Rao II renounced Maratha leadership. Scindia was forced to sign the Treaty of Gwalior and provide help to the British against the Pindaris.
The Third Anglo - Maratha War led to the abolition of Peshwa's hereditary office.

Question 8.
Explain the doctrine of Lapse. Name the other methods used by Lord Dalhousie to expand the British power in India.

Answer:

According to Doctrine of Lapse if the ruler of a dependent state died without leaving a natural I the state would automatically pass over to the British. The Doctrine of Lapse did not recognise adopted children as rightful heirs. Satara, Jaitpur, Baghat, Udaipur, Sambhalpur, Jhansi and Nagpur were annexed under the Doctrine of Lapse. Punjab was annexed through war. Awadh was annexed by Dalhousie on the basis of misgovemance.

$8^{\text {th }}$ CIVICS - CH-2
 The Union Executive

Time To Learn

I. Fill in the blanks:

1. A person to be appointed a minister must be a member of either House of Parliament.
2. The Prime Minister decides the business to be carried on by the Cabinet.
3. The Vice President is elected for a period of five years.
4. The Prime Minister distributes portfolios among the ministers.
5. The public servants constitute the permanent executives.
II. Tick mark (\checkmark) the correct statements and cross mark (X) the wrong ones :
6. The Prime Minister is the vital link between the President and the Cabinet. \checkmark
7. The Prime Minister acts on the advice of the President.

X

3. A money bill cannot be introduced without the President's authority.
\checkmark
4. The President can appoint anyone as the Prime Minister. \mathbf{x}
5. Most of the Civil Servants at the Centre are selected by the Union Public Service Commission.
\checkmark
III. MATCHING

Answer:

1. The Prime Minister

2. The President
3. The Cabinet

4. The Council of Ministers

5. A Department

(e) heads the Coucil of Ministers.
(d) appoints the Prime Ministes
(a) takes all important decisions.
(b) consisted of all the Ministers.
(c) under the control of a Minister is called portfolio.
.Answer the following:

Question 1.

Who is the Chief Executive of the Indian Union? Who votes for him?

Answer:

The Chief Executive of the Indian Union is the President. The elected members of both the Houses of Parliament and the elected members of the Legislative Assemblies elect the President.

Question 2.

State two executive and two judicial powers of the President. Under what circumstances can the President proclaim a state of emergency?

Answer:

Two Executive powers of the President are:

1. He appoints the Prime Minister and Union Minister.
2. He appoints state Governors, the Judges of the Supreme Court and High Court, the Comptroller and Auditor-General, the Attorney General and members of the Union Public service Commission.

Two Judicial powers of the President are:

1. He can pardon, remit or suspend a sentence of punishment given by a court martial or death sentence passed by the court.
2. He is not answerable to any law court for the exercise of his powers, except in case of impeachment in Parliament.

The President can declare emergency if:

1. Security of India is threatened.
2. There is a break down of the constitutional machinery in a state.
3. The financial stability of the country is threatened.

Do you think the President of India should be directly elected by the people? Why/why not?

Answer:

We have a system of government in which the Prime Minister is the most important person in the government of the country, the President is only a nominal Head. If the President was to be elected then he too would be equally important was powerful. Then there would be a clash of powers. So, in my opinion it is preferable that the President should not be directly elected by the people.

What are the two main functions of the Cabinet?

Answer:

The two main functions of the Cabinet are:

1. All important decisions are taken by the cabinet ministers.
2. Cabinet formulates the policies and programmes of the government.

Question 4.

Name the three categories of the union ministers.

Answer:

The three categories of Ministers are:

1. Cabinet Ministers
2. Minister of State
3. Deputy Ministers

Question 5.

What is the position of the Prime Minister? Mention his powers.

Answer:

Leader of the political party or parties securing absolute majority in the Lok Sabha.

1. Leader of the Lok Sabha,
2. Manages the affairs of the country both internal as well as extrenal,
3. He is the chief spokesperson of the Government.
4. Selects other ministers.
5. Distributes portfolios.
6. Can demand the resignation of any minister.
7. Advises the President on various appointments to important posts.
8. Presides over cabinet meetings.

Question 6.

Do you think the President of India should be directly elected by the people? Why/why not?

Answer:

We have a system of government in which the Prime Minister is the most important person in ti government of the country, the President is only a nominal Head. If the President was to be elected then he too would be equally important was powerful. Then there would be a clash of powers. So, in my opinion it is preferable that the President should not be directly elected by th people.

Civia-Ch-2 The union Executive
Q \rightarrow mention the role of civil servants in executing policies.
Ans 8 Civil servants implements the th policies or laws formulated by the cabinet. They are the administrative or permanent executives. They are selected by the union Public service commission.

I Tick (V) the correct answer

1. Or. Rajendra Prasad
2. President
3. Vice-President
4. 12
5. President

Q All the ministers, including the Prime Minister swim Ans $7 \rightarrow$ The Prime minister and the council of ministers are directly responsible to the Rok sabha. If a vote of no confidence is passed against one minister, the whole Council of ministers including the Prime minister has to resign.

CHAPTER: 3 MIGRATION
EXERCISE.
ANS. (1) Fill in the blanks:
(a) Internal.
(b) Push.
(c) Emigration.
(d) Rural to urban.
(e) Highest.

ANS.
C2) MATCH THE FOLLOWZNタ:'
column A COLCOMNB
(a) Better job opportunities is a (vi) pull Factor.
(b) Lack of job opportunities is a (V) Push factor.
(c) Immigration \qquad (i) movement of people into a country.
(d) Emigration \qquad out of a country.
(e) Cause of forced migration include -civ) Political instability (f) The movernet and uncontrolled spread of of nomcolic an epidmic. families \longrightarrow (iii) is not migration.
ANS.
(3) write ' T ' for true and ' F ' for false.
(a) - FALSE.
(b) - TRUE.
(c) - TRUE.
(d) - TRUE.

ANS.47 ANSWER THE FOLLOWIN\& QuESTIONS PagRIEALY.
(a) -P. 35 .
(b) - NO.
(c) $-P .36$.
(d) - Page 40 .
(e) - Page 36 .
(t) - page 37 .
(g) - p. 37 .
(h) - P. 36 .
(i) IDENTIFY THE PUSH AND PULL FACTORS.
(i) Pull.
(ii) Push.
(iii) Push.
(iv) Pull.
(v) Pull.
(vi) Pull.
(vii) Pull.
(viii) Pull.
(ix) Push.

ANS .57 Answer the following questions in start.
(a) Page. 35 ; Page. 36.
(b) Page 34.
(c) P. 41 .
(d) P. 41 .
(e) Differentia between the following.
(i) Page. 34 .
(ii) 143 .
(iii) written.
(t) Page. 41 ; Page. 42.
(g) Page. 42.

ANS.6] LEARNING IS FUN.
ACROSS:
(5) PULL.
(6) THU\&\&I.
(g) EMI\&RATION.
(10) IMMIGRATION.
(11) EMIGRANT.

DOWN:
(1) DEPOPULATION.
(2) PUSH.
(3) BRAIN DRAIN.
(4) MI\&RATION.
(7) IMMI\&RANT.
(8) REFU\&EE.

ANS.57 (iii) Differentiate between HOST COUNTRY AND COUNTRY OF ORIGIN.
HOST COUNTRY: (i) Houst Country is that country. where a person, who comes to live permanently in a foreign country.
(ii) For example, NRI, settled in abroad

COUNTRY OF ORIGIN:
(i) A person, who live permanently and settled in their 'birth country.'
(ii) For example, Indian porn in India s settled within the country.

CHAPTER: 06
ASIA - THE LARGEST
ACTIVITY -1.

Find out Two other wildlife species that ave native to the Continent of Asia. Mention their unique characteristics and their type of habitat one would find them.
ANS] (1) Asian Elephant.
(2) Giant Panda.
(1) Asian Elephant:
(i) Largest land animal on earth.
(ii) They have characteristics long nose or trunks, large floppy ears and wide thick legs.
(iii) Asian Elephant habitat, Inhabit grasslands, tropical evergreen forest and decidous forest.
(2) Riant Panda:
(i) one of the cutest animals in the world.
(ii) They have a distinctive black and white appearance.
(iii) they are good climbers.
(iv) Giant panda habitat found in Bamboo forest in western china and in sichuan province, which is the home of Slant Panda.

CHAPTER: 06
Arb
EXERCISES: ASIA THE
(1) Fill in the blanks.
(a) Asia.
(b) Russia.
(c) Pacific ocean, Arctic Ocean.
(d) Sinai Peninsula.
(e) Siberian and Turan.
(t) Pamir Knot.
(g) River basin.
(h) Malory.
(i) Latitude.
(i) Taiga.
(2) MATCH THE FOLLOWINX:

Column A
Column B
(a) ural Mountains - unofficial border b/w Europe and ASIa.
(b) Egyptian Civisatation did not flourish in - ujung akelon National
c) Armenia and Azerbaijan - Port of former USSR that ane Pack.
(d) Amu Darla and Syr Darla River flow into - ARAL SEA.
(e) Root of the world -Tibetan plateau.
(t) Archipelago - A longe group of Islands.
(g) Temperate grasslands - No trees, insufficient rainfall.
(h) Tundra - Moss and Lichen.
(i) Javan Rhino - Asia.
(i) Living in trees is. Known as - Arboreal.
(3) WRITE ' T ' for true and ' F ' for false.
(a) TRUE.
(b) FALSE.
(c) TRUE.
(d) TRuE.
(e) FALSE.
(f) FALSE.
(g) TRUE.
(b) FALSE.
(i) TRUE.
(i) FALSE.

Quos 4) Answer the following questions brieth.
(a) 48 Countries.
(b) Page 96.
(c) $P .95$.
(d) TIBETAN PLATEAU.
(e) P. 108 .
(f) BERIN\& STRAIT.
(g) P. 103.
(h) P..96.
(i) P. 106.
(i) $P \cdot 105$.
(k) $P .106$.
(\&) P. 105 .
(m) P. 100 .
(h) P. 102 .
(0) P. 102 .
(P) Maloy Archipelago, Consists of Indonesia, Malasia, Singapon, Timor.
New suinea. Sulawesi,
Borneo island.
(q) p.103.

Ques.5) Answer the following questions in detail:
(a) Page 104, Page 105, Page 106.
(b) P. 106 .
(c) P. 107, P. 108 .
(d) P. 106 .
(e) P. 110 .
(t) Differentiate botween the following:
(i) P. 108 .
(ii) Page 105.
(iii) Page 106.
(g) Page 121.
(h) P. 100 .
(i) P. 102 .
(i) P. 102 .
(k) P. 109 .

Ques. 67 LEARNIN: IS FUN. ACROSS:
(2) KUROSHIO.
(3) TAI\&A.
(5) KURILE.
(g) TRANSCONTINENTAL.
(11) PACIFIC.
(12) EURASIA.
(14) LATITUDE.
(16) RUSSIA.

DOWN:
(1) ARCHIPELAYO.
(4) YUNAN.
(6) SHAN.
(7) HINDUKUSH.
(8) STEPPES.
(10) $A S I A$.
(13) URAL.
(15) TURIN.

PROTECT/ACTIVITY:
(1) Dage 96 .
(2) Page 98.
(3) Page 121.
(4) On an oustine map of Asia, monak the following:
(a) Page. 101.
(b) Page. 101.
(c) Poge. 101.
(d) Page 98.
(e) Page 98.
(f) Page 98 .
(g) Page 101.
(h) Page 98 .
(i) page 98 .
(i) Page 101.

ASIA-POLITICAL

हेमीभा-ठग्तरीडिव

TRE COUNTRIES OF ERST ASEA.

ASIA-POLITICAL
 हेम्रोभा-वग्नरीडडव

Name

ASIA-POLITICAL

 टेमीमभा-ठग्नठीडिव एशिया-राजनैतिक

ASIA-POLITICAL हेम्नीभा-ठग्तरीउउव एशिया-राजनैतिक

ASIA-POLITICAL हेप्तोभाT-वग्ततीउव एशिया-राजनैतिक

NORTHERN LOWLANDS OF ASIA

CENTRAL HIYHLAND OF ASTA

ASIA-POLITICAL
 होम्नोभा-ठग्नहीडिव
 एशिया-राजनैतिक

Roll No
Sareen Trading Co., Jal.

SEAS OF ASIIA

ASIA - PHYSICAL

2. The territorial waters of India extend into the sea to a distance of twelve nautical miles measured from the appropriate baseline.
3. The External Boundary and coast-line of India shown on this map agree with the Record / Master

Survey of India. Dehra Dun, vide thine letter No. TB 991/62-A-3/2ap agree with the Record / Master Copy certified by the

Publishers :

Survey of India. Dehra Dun, vide thine letter No. TB 991/62-A-3/213 Dated 5/5/2003.
INDIAN BOOK DEPOT (MAP HOUSE) ${ }^{\text {® }}$

FACTS ABOUT ASIA.

ASIA-POLITICAL घेंतीभा-ठग्तहीडिव एशिया-राजनैतिक

Name
Class
Section
Roll No.
Sareen Trading Co., Jul

ASIA - PHYSICAL

[^0](C) Government of India Copyright, 2012

1. Based upon
2. The territorial waters of India extend in e india shown on this map agree with the Record / Master Copy certified by the

INDIAN BOOK DEPOT (MAP HOUSE) ${ }^{\oplus}$
The External Boundary and tire letter No. TB 991/62-A-3/213 Dated 5/5/2003

PLATEAU AF AK城
PLATEAUS OF ASIA

ASIA - PHYSICAL PLATEAU OF ASIA. एशिया - प्राकृतिक

PLAIINS OF ASIIA

GREAT PLAIN OF CHINA

ASIA - PHYSICAL

1. Based upon Survey of india map with the permission of the Surveyor General of India (C) Government of india Copyright, 2012
2. The territorial waters of india extend into the beat to a distance of twelve nautical miles measured for time appropriates baseline
3. The External Boundary and poast-line of India shown on this map agree with the Record / Master Copy certified by the

INDIAN BOOK DEPOT (MAP HOUSE)
Survey of India Dehra Dun, vide there letter No TB 9日1/02-A-3/213 Dated 5/5/2003
2037. Banddurgarh Road. Deini-110006.

RIVERS OF INDIA

ASIA-POLITICAL होम्नोभा-ठ'्तरीडिव

ASIA - PHYSICAL एशिया - प्राकृतिक

[^1]
ASIA - PHYSICAL
 एशिया - प्राकृतिक

DESERT OF ASTA

First term answer key 8th standard English language
Ch-11 comparison of adjectives

1. Pretty prettier prettiest
2. Sad sadder saddest
3. Happy happier happiest
4. Near nearer nearest
5. Late latter latest
6. Old older oldest
7. True truer truest
8. Bad worse worst
9. Emphatic more emphatic most emphatic
10. Cold colder coldest
11. High higher highest
12. Wonderful more wonderful most wonderful
13. Magnificent more magnificent most magnificent
14. Yellow yellower yellowest
15. Pleasant pleasanter pleasantest

Ex. 2

1. Taller- degree of comparison

Strongest superlative degree
2. More useful superlative degree
3. Long positive degree
4. 23 positive degree
5. Largest superlative degree
6. No positive degree

1. B) noisy Street
2. Delicious Apple
3. Clevermind
4. Religious nature
5. Honest dealing
6. Straight forward opinion
7. Pitiable condition
8. Intelligent fellow
9. Frank nature
10. C) old ,Worried
11. 5,3
12. Superior
13. No
14. Many, March
15. All
16. Brighter
17. Strongest
18. Little
19. Little
20. A little
21. Few

Ex- 3

1. Take the shorter of the two routes.
2. Many a man has ruined his career for want of a good guide.
3. No fewer than ten men were engaged.
4. This cloth is finer than that.
5. She is my elder sister.
6. He got passing mark in English.
7. Have a ten rupee note.
8. Both of his sons are doctors.
9. I prefer death to dishonor.
10. The climate of India is colder than that of Africa.

ACTIVE/ PASSIVE VOICE

EX-1

1. He was kept waiting by me.
2. The lamb was frightened by the noise.
3. The orphans are being helped by the kind hearted woman.
4. A book has been chosen by Ram.
5. A job was offered to him by the officer.
6. Let the door be opened.
7. By whom are you taught English?
8. My proposal was objected to strongly by him
9. The snake was not killed by him.
10. May this map be seen by me? Your servant must be rewarded for his courage by you.
11. Let the horse be saddled by you.
12. He was elected minister by them.
13. A debate is being held in the school hall by the boys
14. The application was forwarded to the headmaster by the teacher
15. A race was run by Atlanta.
16. Exile is not feared by her.
17. I am vexed by his behaviour.
18. We are being watched by him.
19. Was the noon train caught by him?

Ex-2

1. His own friends are receiving him.
2. The people welcomed Prince Hamlet.
3. The sub committee has approved of the plant
4. Much anxiety has been caused to me.
5. The teacher granted permission to the student.
6. Have you carried out my orders?
7. They listened eagerly to the story.
8. The police carried home the wounded persons.
9. The washerman has not yet washed my clothes.
10. The storm uprooted the tree.
11. The singing of the birds greatly delighted us.
12. My father give me a new watch.
13. Columbus discovered America.
14. We heard not a drum.
15. Who wrote this piece of composition?
16. They have cut the electric wires.
17. In expectation are spent our lives.
18. Let danger not daunt you.
19. Has not gambling ruined many?
20. Into your confidence why should I not be taken?

Ch- 21 The Gerund

Ex-1

1. Telling gerund subject of the verb will not help
2. Coming gerund object of the preposition
3. Reading, writing gerund .object of the verb learn
4. Coming gerund subject of the verb cast
5. Burnt participle qualifying the noun child
6. gone participle qualifying the noun people
7. leaving gerund object of the verb will mind
8. running participle qualifying the noun tap.
9. Standing gerund subject of the verb knows
10. Amassing gerund object of the preposition in
11. crying and complement of verb.

Ex-2

1. Laughing is better than frowning.
2. To write a story is not easy.
3. He likes collecting books and does not like to give them away.
4. To fly kites is a favourite sport but betting on them is bad.
5. He loved reading and writing.
6. She likes to dance and sing.
7. To reach school in time is always his problem
8. Painting is good but to paint is not in his vein
9. To earn money is good but to spend always is undesirable.
10. To apologize for your misconduct is the only way of escaping punishment.

Ch- The conjunctions
Ex-1

1. And coordinating conjunction
2. Before time subordinating conjunction
3. And cumulative coordinating conjunction therefore illative coordinating conjunctio
4. Unless condition subordinate conjunction
5. Neither nor alternative coordinating conjunction
6. II- he touched neither food nor water.
7. He lost not only his bag but also his walking stick.
8. No sooner had he come then he was off again.
9. Scarcely had he gone when a postman knocked at his door.
10. Do like I do.
11. You must act as I tell you.
12. I cannot go to him unless he invites me.
13. Though his clothes were old and worn yet looked clean and of good quality.
14. He worked hard as until it grew dark.
15. Unless you tell me the truth I shall punish you.

Ex-2
Fill in the blanks with suitable conjunction

1. As
2. Until
3. Because
4. Though
5. But
6. As
7. Lest
8. So that
9. All the
10. Until

II combine the sentences

1. Take care of yourself or you will be ill.
2. He Deserted his brother because he was very proud.
3. You must do as you are told or you will be punished.
4. Although he tried to get up he could not.
5. The policeman ran after the thief but could not catch him.
6. Although you may not be successfully yet you out to attempt the questions.
7. Though all men were against doctor Johnson preserved.
8. Not only he but also you are honest.
9. Send me a Message and I will come at once
10.Lead me anywhere and I shall go.

III SUITABLE CONJUNCTIONS OR RELATIVE PRONOUNS

1. Unless
2. And
3. Since
4. But
5. And
6. Lest
7. And
8. But
9. Till
10. Or
11. When
12. Than

Ch- transformation of sentences
Ex-2

Change the degree of comparison

1. An as is not as intelligent as a horse (positive).
2. A foolish friend is not as good as a wise enemy .(Positive)
3. No other seaport in India is better than Mumbai. (comparative)
4. Very few other statemenof England were as great as disraeli (positive)
5. Hoshiyarpur is more fertile than most other districts (comparative)
6. Very few other poets are as great as Kalidas. No other poet is greater than Kalidas.
7. Dickens David Copperfield is the most popular book. Dickens David Copperfield is most popular than most other books.
8. Gold is more precious than most metals. Few other metals are as precious as gold.
9. To act is not as easy as to speak. To speak is the easiest.
10. A horse cart is not as fast as a train. A train is the fastest.
11. I do not know you as well as he. He knows you best.
12. He knows you best. I do not know you as well as him.
13. He is meaner than all men. No man is as mean as him.

Ex-4 change into passive form

1. I have been promised help by my friend.
2. We are taught history by Mr munshiram
3. Nothing could be done by the teacher
4. 40 desks are contained in our classroom.
5. Is this gentleman known to you?
6. The humble should not be teased.
7. His brother is not cared for by him.
8. The boat is to be lowered by you.
9. The audience was very much impressed by Edmund Burke charming voice.
10. Let a sheet of paper be brought from the office for me by you.
11. It cannot be allowed by me.
12. To build a bridge over the canal has been proposed by the government.
13. He was chosen captain by them.
14. Good news is expected by everyone.
15. The police was ordered to open fire on the crowd by the magistrate.
16. The accused should be handcuffed where the orders given immediately by the judge.
17. Why is he laughed at by you?
18. Where were you led by the man?
19. Flattery from man is liked by women.
20. Let the names now be called.
21. How was this conclusion arrived at by you?
22. Was the battle of Hastings won by the normans?
23. Marry 's hand was claimed by William.
24. The owner of driving the first ball was claimed by the captain.
25. Many years ago cowboy going to the market was killed by a highwayman.
26. Let the work be stopped now.

Ex-b change into active form

1. Spread a carpet on the floor.
2. We must obey our parents.
3. I am lucky they tell me.
4.Murder and dacoity were the charges they were guilty of.
4. You like which of these pictures?
5. It is said Columbus discovered America.
6. Who Tested your reading and recitation?
7. The company he keeps makes known a man.
8. On this matter the government has moved.
9. The association compelled me to withdraw.
10. Liberty was granted to John Buryan.
11. The teacher found fault with his conduct.
12. Floods have interrupted the bus service.
13. They removed the injured to the hospital.
14. Safety of my brother has been confirmed by telegram.
15. Someone has broken my watch
16. Those who live in glass houses should not throw stones.
17. One must endure what one cannot cure.
18. Declare the innings closed now.
19. He was killed where?
20. Is suspicion of the murder on him?
21. The normans killed King Harold of England.
22. Imitate not the most he is.
23. Separation from each other is not possible in the case of the two sisters.
24. Lights off colour illuminated beautiful the college building.
26.Enemy action wrecked the ship.

English Literature - VIII
LII 10 My Dearest Lizzy
Part
A

1) a
2) C
3) C
4) C
5) a

B
Ansi) Elizabeth felt that way because she was very much worried about Jane's health. She wanted to see her sister and take care of her.

Ans 2) Mrs Hurst and Miss Bingley were surprised to see her because she had walked a long distance to see her sister. Elizabeth's stalking were dirty and her feet wise weary.

Ans 3) As soon as Elizabeth entered Jane's room. She was delighted to see her. She showed her gratitude towards Elizabeth while she was taking care of her. Elizabeth did not leave her alone for a moment.

Ans) The apothecary's told that she had caught a violent cold. He adviced Jane to take rest and prescribed some medicinal drink to be taken at regular intervals.
Ans 5) Miss Bingley invited Elizabeth to remain in Netherfield because she had understood that Jane did not want to part with her sister in her ilrsess. She was feeling letter in her presence.
C Think and Answer -
Ans) Jane and Elizabeth share a loving relationship. As we can see that Jane wrote to Elizabeth about her illness and rlizabety reaction also proves the nature of their relationship.

Ans 2) Mr. Bennet was very much concerned about Jane's health. He scolded his wife for sending Jane out in a bad weather-

Ans 37 Jane was not feeling well and her condition at that time was not as good to give her reaction by saying something. She gave express on of gratitude for the kindness shown by Elizabeth.

- Elizabeth - determined, Considerate mrs Bennet - Ambitious, indifferent
Jane - dependent, thoughtful mr. Bingley - kind, polite
E 1) intermission

4) glowing
5) scarce
6) dispatched
7) assembled
a) Do it yourself
H) 1) will, will be waiting will pick
8) will be staying
will call
will be travelling
will be fine. will be on leave
will be joining office
will speak to the manager.
I 1) b 2) b 3) a 4) a
$\mathrm{Ch}-3$ The Trial
Comprehension -
9) John Barshad
10) The Attorney General
11) Lucic manette
12) Jarvis Lolly
13) Sydney Carton
14) Charles Darnay

A
Ans 1) It was the time when people were getting fatal penalties for tiny crimes. So when people heard about anybody's trial at the court, they became so curious to bow about the death sentence of that person.
2) Carton's conversation with charles was based upon his own feelings for Lucile and Lucifers feelings for charles. He was trying to know how Charles like Lucite.
3) I would like to make a friend who is selfless, helpful, faithful and loyal and he should be a motivation to us. He should help us when we are in trouble and should respect his elders and teachers

B 1) This extract shows the first impression of Lucile's words on weal Or. manette.
2) These words by sydney Carton show his careless nature. He is telling charles that he has no one in his life, who take care of him.
3) Mr. Stryver tries to make Carton feel bad of his profession but Carton does not change his opinion. He does not admit that he has lagged behind in his profession.
Language Practice -

1) Charged with 2) found h / m guilty
2) Condemned the prisoner to death
3) earns his living as
4) weak with hanger

L-4 Monsieur le Marquis
A
Ansi) Marquis was a cold - hearted ruler, who did not care about the people of his kingdom He was concerned only about his own well being. He did not show any regret at the death of a child instead he was worried about his chariot. I feel it was right to murder him because he deserved death like this.

Ans) No, it is not right for someone to take law into their hands but in this story, the person who has the responsibility to maintain law and order in the country is breaking it himself. So, some patriot
thought it better to kill him instead of bearing the injustice done by him.
B
Ansi) Lucie is talking about the sound of the footsteps of people outside, who are running here and there to find a shelter to escape from the rain. She considers these sounds as sound of those people who are related to her in Lome way.
2) Defarge said this to father of the dead child to console him. He said that it was better to be dead instantly instead of living
in such badly run kingdom. in such badly run kingdom.
3) Charles said these words to his uncle Marquis. He is showing disapproval towards Marquis' behaviour for people of his kingdom. He wanted to make him realize that it is going to prove fatal for him.

Et-5 Martage Proposals
Language Practice- $L-4$
Underline the correct word.

1) pedestrian
2) stir 5) witness

Comprehension -
a 2
b 5
c 4
d 1
e 6
f 3
A
Ans 1) I think Charles Darnay would be the best husband for lucie- As we see, he is a gentleman by heart as well as by his appearance. He likes lucie and is able to give her a comfortable life. Above all he is liked by Lucie.
2) In the past, parents of boys and girls decided whom their son or daughter should marry. They took the decisions and their decisions were followed by their children. Nowadays, things have changed. Parents give their children liberty to. Choose their life partner when they become educated and financially independent.
3) Acc. tome, dowry system is the mast unusual custom in my country. In accordance to this system when a girl gets married and comes to her husband's home, she brings so many gifts like money, furniture, clothes and ornaments from her fathers
side. It is very strange that a father has to give so much along with his daughter.
B
Ans)) These lines of Dr. Manatee show his fatherly concern for his daughter. When Charles tells his feelings for Lucie. Dr manette wants to avoid the truth that his daughter will marry someone and go away from him. So, he requests Charles not to remind Lim of that trecth.
2) Mr. Lorry said these to Mr. Stryver because he does not want him to be hurt. As Mr Stryver is planning to go to Manette's house to ard Lucie's hand for marriage, Mr Lorry hnows that he'll get a negative responseSo he advises not to go there.
3) Sydney Carton said these words to Lucie when he confessed his love for her. He was trying to got sympathy from lucile by telling about his pityful conditions. He says that he is useless but he has done one thing worthy in his life.
Language Practise

1) to
2) at
3) of
4) with
5) out
6) of
7) in, of
8) of $/$ for 9) away (0) in

English Literature - VIII
$\mathrm{CH}-5$
(Peace blossoms in human heart)

1. Peace cannot be made in the Round table Conference If we want a peaceful would, we should make our Coventry peaceful. This, there should be peace within the hearts of every human being
2. No doubt, we have made so many advancements and gooels, but there are only useful if we are aware of the peaceful Co-existance.
(My thoughts)
3. Thelg should be made educated about their selfprotection
4. Training should be given to them in Karate, Boxing ste
5. Government should be Very strict to the Convicts
6. Our life style, clothing, movements showed not be loud, vulgar os showy.
(Brain stroming session)
7. Yes
8. Yes
9. yes
10. Yes
11. Yes
12. yes

$$
R S=\{1,3,4,5,6,7,8,9\}
$$

here inequation is $x \leqslant 6$

$$
\therefore S S=\{1,3,4,5,6\}
$$

Now we will show there numbers $1,3,4,5,6$ on number line: firstly with scale, draw a number line mark dark dots on number line to represent the numbers $, 3,4,5,6$

2 Inequation is $x<8, x \in W$

$$
\begin{aligned}
& \text { nequation }=\{0,1,2,3,4,5,6,7\} \\
& \therefore S S=\{0,1 ; 2,3,4,5,6,7\}
\end{aligned}
$$

3) (i) Inequation is, $x<5$

$$
\begin{aligned}
R S & =\{1,2,3,4,5,6,7,8\} \\
\therefore S S & =\{1,2,3,4\}
\end{aligned}
$$

(ii) Inequation is $x<5$

$$
\begin{aligned}
& R S=\{-2,-1,0,1,2,3,4,5\} \\
& S S=\{-2,-1,0,1,2,3,4,\}
\end{aligned}
$$

4 (i) Inequation is $-1 \leqslant x \leqslant 4, \quad x \varepsilon I$ (here I - integers)

$$
\begin{aligned}
& \therefore S S=\{-1,0,1,2,3,4\} \\
& -4-3-2-1 \\
& \hdashline 1
\end{aligned}
$$

(ii) inequation is $-2, \ll 2, x \in I$

$$
\begin{aligned}
& S S=\{-1,0,1\} \\
& \begin{array}{l}
1
\end{array},-2-1,0,1 \\
& -3
\end{aligned}
$$

(iii) inequation is $x<6, x \in \mathrm{~N}$

$$
s s=\{1,2,3,4,5\}
$$

(iv) same as ii)
(v) same as i)

$$
\varepsilon x-13.2
$$

$1 R S=\{0,1,2,3,4,5\}$
i) inequation is,

$$
\begin{aligned}
& x+5 \leq 10 \\
& x \leq 10-5 \\
& x \leq 5
\end{aligned}
$$

$$
\therefore S S=\{0,1,2,3,4,5\}
$$

(ii)

$$
\begin{aligned}
& 2 x-1>6 \\
& 2 x>6+1 \\
& 2 x \gg \\
& x>7 / 2 \Rightarrow x>3.5
\end{aligned}
$$

2.

$$
\begin{aligned}
2(x-3) & \leq 5 x \\
2 x-6 & \leq 5 x \\
-6 & \leq 5 x-2 x \\
-6 & \leq 3 x \\
-\frac{6}{3} & \leq x \\
-2 & \leq x \\
x & \geq-2
\end{aligned}
$$

$$
x=\{-2,-1\}
$$

Qu

$$
R S=\{3,4,5,6,7\}
$$

$$
\text { ins equation is, } 7-\frac{x}{2}>\frac{5 x}{3}-6
$$

$$
\begin{gathered}
7+6>\frac{5 x}{3}+\frac{x}{2} \\
13>\frac{10 x+3 x}{6} \text { (labe Lcm)) } \\
13>\frac{13 x}{6} \\
13 \times \frac{6}{13}>x \\
\\
6>x \\
S S=\{3,4,5\}
\end{gathered}
$$

4. in equation is $2(x-8)>5+x$

$$
\begin{aligned}
& 2 x-16>5+x \\
& 2 x-x>5+16 \\
x= & \{22,23 \ldots 2\}
\end{aligned}
$$

[Choose $x+v e$ as in statement replace $]$
5)

$$
\left.\begin{gathered}
\frac{2}{3}(9 x-15)+4 \leq 6+\frac{3}{4}(4-12 x) \\
\frac{2}{3} \times 9 x-\frac{2}{3} \times 15+4 \leq 6+\frac{3}{4} \times 4-\frac{3}{4} \times 12 x \\
6 x-10+4 \leq 6+3-9 x \\
6 x-6 \leq 9-9 x
\end{gathered} \right\rvert\, x \leq 1,
$$

$$
15 x \leq 15
$$

(In statement $x \in N$)

$$
x \leq \frac{15}{15} \Rightarrow
$$

natural no.
6)

$$
\begin{aligned}
5(x-1) & <2 x+1 \quad, x \in W \\
5 x-5 & <2 x+1 \\
5 x-2 x & <1+5 \\
3 x & <6 \\
x & <\frac{6}{3} \\
x & <2 \\
x & =\{0,1\}
\end{aligned}
$$

$(\because$ in statement $x \in W) \rightarrow$ whole no.
To show it graphically, lake number line

$$
8 x-10.1
$$

(1) (i) $P=\sum 3500, R=8 \%, T=2$ years 8 months

$$
\begin{aligned}
T & =2 \text { yrs }+\frac{3}{12} \text { yes } \\
& \left(2+\frac{2^{\prime}}{12}\right) \text { yrs }=\left(\frac{8+1}{4}\right) \text { yrs }=\frac{9}{4} \text { yrs } \\
S \cdot I & =\frac{P \times R \times I}{100} \\
& =\frac{3500 \times 8 \times 9}{100 \times 4}=\mp 630
\end{aligned}
$$

Amt $=P+S \cdot I$

$$
3500+630=₹ 4130
$$

(li) and (III) same as (i)
(IV) same as eg-2 on $\mathrm{Pg}-123$)

$$
P=₹ 4000 \quad R=8 \%
$$

$T=$ no. of days of months sep, oct, no f

$$
\begin{aligned}
& =27+31+15=73 \text { days } \\
& =\frac{73}{365} \text { yrs }=\frac{1}{5} \text { yrs } \\
& S . F=\frac{P \times R \times T}{1(0)} \text { (solve it) }
\end{aligned}
$$

(v) $P=£ 2000, \quad T=2 \frac{1}{3} \mathrm{yr}, R=3$ paise per rupees per month

$$
\begin{aligned}
& R=\frac{3}{10} \times 12 \% \\
& S \cdot I=2000 \times \frac{7}{3} \times 3 \times 12
\end{aligned}
$$

solve and also find Ant

Q2 $R=4 \% \quad S I=\{3250 \quad T=3$ yes 3 months

$$
\left(3+\frac{3}{12}\right) \text { yres }
$$

$$
\begin{aligned}
P= & P \\
P= & \frac{S I \times 100}{R \times T} \\
& \frac{3250 \times 100}{4 \times \frac{13}{4}} \Rightarrow \frac{3250 \times 100}{13} \\
& =\$ 25000
\end{aligned}
$$

(3)

$$
\begin{array}{rl}
A= & \{5031, \quad T=4 y r s, P=725 \%, P=? \\
A=P+S I & P+\frac{P \times R \times I}{100}=P\left(1+\frac{R T}{100}\right) \\
5031 & =P\left(1+\frac{725 \times 4}{100}\right) \\
& =P\left(1+\frac{29}{100}\right)=P\left(\frac{100+29}{100}\right) \\
5031 & =P\left(\frac{129}{100}\right) \\
P & =\frac{5031 \times 100}{129} \\
P & =\Sigma 3900
\end{array}
$$

(4) $S \cdot I=\bar{₹} 112.50, \quad T=2 \frac{1}{2}$ yes $=\frac{5}{2}$ you

$$
\begin{aligned}
& P=2750 \\
& R=\frac{S I \times 100}{P \times T} \\
& R=\frac{112.50 \times 100 \times 2}{750 \times 5}=6 \%
\end{aligned}
$$

(5)

$$
\begin{aligned}
& P=23500, A=23647, \quad R=P \\
& T=\text { no. of days in months } \\
& =\text { (sep }+ \text { oct }+ \text { nov }+\mathrm{dec}+\text { Jan }+ \text { feb } \\
& \text { Maven + Apr + May) } \\
& =(3+31+30+31+28+31+30+4)=219 \text { days } \\
& T=\frac{219}{365} \text { yrs } \\
& A=P\left(1+\frac{R T}{100}\right) \\
& 3647=3500\left(1+\frac{R \times 219}{100 \times 365}\right) \\
& 3647=3500\left(1+\frac{3 R}{500}\right) \\
& 3647=3500\left(\frac{500+3 k}{500}\right) \\
& \frac{3647}{7}=500+3 R \\
& 521-500=3 R \\
& 21=3 R \\
& \frac{21}{3}=R \\
& 7 \%=R
\end{aligned}
$$

(6) Let Principal $=P$

$$
\begin{aligned}
& A=2 P \\
& T=\left(6+\frac{8}{12}\right) \text { yrs }=\left(\frac{18+2}{3}\right) y r s=\frac{20}{3} y r s \\
& A=P\left(1+\frac{R T}{100}\right) \Rightarrow 2 P=P\left(1+\frac{20 R}{3 \times 100}\right) \\
& \frac{2 P}{P}=1+\frac{R}{15}
\end{aligned}
$$

$$
\begin{aligned}
& 2-1=\frac{R}{15} \\
& 1=\frac{R}{15} \Rightarrow R=15 \%
\end{aligned}
$$

(7) Let Principal $=P \quad, S \cdot I=\frac{4}{5} P, T=8$ gre

$$
\begin{aligned}
& S \cdot I=\frac{P \times R \times I}{100} \\
& \frac{4 P}{5}=\frac{P \times R \times 8}{100} \\
& \frac{4 P \times 100}{5 \times P \times 8}=R \\
& R=10 \%
\end{aligned}
$$

(8) $T=P, \quad P=\mp 1150 \quad, S \cdot I=230, R=5 \%$ (Do yourself)
(9) Let Principal $=P, \quad A=3.5 P \quad, \quad R=16 \frac{2}{3} \%$

$$
\begin{aligned}
& T=? \\
& A=P\left(1+\frac{R T}{100}\right) \Rightarrow 3.5 P=P\left(1+\frac{50 T}{3 \times 100}\right) \\
& \frac{35 P}{10}=1+\frac{T}{6} \Rightarrow \frac{50}{2}-1=\frac{T}{6} \\
& 7-\frac{2}{2}=\frac{T}{6} \Rightarrow \frac{T}{6}=\frac{5}{2} \\
& T=\frac{5}{2} \times 6 \Rightarrow T=15 \text { yes }
\end{aligned}
$$

(10) Let the money borrowed be p

$$
A=\overline{ } 12544 \quad R=6 \%
$$

$T=$ no. of days in April + May + Jane $=(23+31+30+24)$ days $=108$ days $=\frac{108}{365}$ yes

$$
\begin{aligned}
A & =P\left(1+\frac{R T}{100}\right) \\
12544 & =P\left(1+\frac{6 \times 108}{100 \times 365}\right) \\
12544 & =P\left(1+\frac{162}{9125}\right) \Rightarrow P\left(\frac{9125+162}{9125}\right) \\
12544 & =P\left(\frac{9287}{9125}\right) \\
P & =\frac{12544 \times 9125}{9287}=\frac{11,44 ; 64,000}{9287} \\
P & =\overline{12325.19}
\end{aligned}
$$

(11) Let sum of money be P

$$
\begin{align*}
& R=6 \% \quad I=\frac{3 y r s}{P \times 6 \times 3} \\
& S \cdot I=\frac{P \times R \times T}{100}=\frac{100}{100} \\
& S I=\frac{18 P}{}=(1) \tag{1}
\end{align*}
$$

dgain $P=9990, \quad R=8 \%, \quad T=5$ yrs

$$
\begin{align*}
S . I & =\frac{P \times R \times T}{100} \\
& =\frac{9990 \times 8 \times S}{100} \tag{2}
\end{align*}
$$

In both cases, S.I is same

$$
\begin{aligned}
\Rightarrow \frac{18 P}{100} & =\frac{9990 \times 8 \times 5}{100} \\
P & =\frac{9990 \times 8 \times 5 \times 100}{100 \times 18} \\
P & =z 22200
\end{aligned}
$$

(12) Wase $I-A=272000, T=$ Syrs

$$
\begin{align*}
A & =P\left(1+\frac{R T}{100}\right) \\
7200 & =P\left(1+\frac{5 R}{100}\right) \\
7200 & =P+\frac{5 P R}{100} \tag{1}
\end{align*}
$$

Sase II $A=\mp 8064, \quad T=8$ yes

$$
\begin{gathered}
\begin{array}{ll}
\perp 11
\end{array}=P\left(1+\frac{R T}{100}\right) \Rightarrow 8064=P\left(1+\frac{8 R}{100}\right) \\
8064=P+\frac{8 P R}{100}=(2) \\
(2)-\frac{(1)}{100}-\left(P+\frac{5 P R}{100}\right)=8064-7200 \\
P+\frac{8 P R}{100}=P-\frac{5 P R}{100}=864 \\
\frac{P R}{100}(8-5)=864 \\
\frac{3 P R}{100}=864 \\
P R=\frac{864 \times 100}{3}=28800 \\
R=\frac{28800}{P}=(3)
\end{gathered}
$$

Put $R=\frac{28800}{P}$ in (1)

$$
\begin{aligned}
7200 & =p+\frac{5 p \times 28800}{100 \times p} \\
7200 & =p+1440 \\
p & =7200-1440=\bar{₹} 5760
\end{aligned}
$$

Put $P=5760$ in (3)

$$
R=\frac{28800}{5760}=5 \%
$$

(13) Firstly $P_{1}=4200, \quad R=5 \frac{1}{2} \%=\frac{\left[\begin{array}{l}\text { Doto } \\ \text { Papp }\end{array}\right.}{2} \%$
S.I $=\frac{P \times R \times I}{100}=\frac{4200 \times 11 \times 5}{100 \times 2} \cdot 2115 S$
sccondly $P=\sum 7500, T=$ byss,$R=9 \%$

$$
S \cdot I=\frac{7.500 \times 6 \times 9}{100}=4050
$$

Total S.I $=1755+4050=5205$
\therefore Total larnings. $₹ 5205$
(14) Firstly $\begin{aligned} P & =23500, R=4 \%, T=5 \text { yrs } \\ S \cdot I & =\frac{3500 \times 4 \times 5}{100}=2700\end{aligned}$

Suondly $P=8000-3500=24500$

$$
\begin{aligned}
& R=6 \% \quad T=\frac{5 y r s}{}=\frac{4500 \times 6 \times 5}{100}=\frac{21300}{}
\end{aligned}
$$

Tolal interest $-4500+1300=\sum 2050$
(15) Case $I-P=2800, \quad A=3500$

$$
\begin{aligned}
& A=P\left(1+\frac{R T}{100}\right) \Rightarrow 3500=2800\left(1+\frac{R T}{100}\right) \\
& \frac{3500}{2800}=\frac{100+R T}{100} \\
& \frac{35 \times 100}{28}=100+R T \Rightarrow 125-100=R T \\
& R T=25=(1)
\end{aligned}
$$

Wase T $P= \pm 6000, \quad A=8160, \quad T=6$ yss

$$
\begin{aligned}
& A=P\left(1+\frac{R T}{100}\right) \Rightarrow 8160=6000\left(1+\frac{6 R}{100}\right) \\
& \frac{8160}{6000}=\frac{100+6 R}{100}
\end{aligned}
$$

$$
\begin{gathered}
8160 \times 100=100+6 R \\
6000 \\
136-100=6 R \\
36=G R \\
6=R
\end{gathered}
$$

Pul $R=6$ in (1)

$$
\begin{aligned}
& 6 T=25 \\
& T=\frac{25}{6} \text { yrs }=4 \frac{1}{6} \text { yrs }
\end{aligned}
$$

(16)

$$
\begin{aligned}
& P=2150 \quad A=2167.20, R=4 \% \\
& A=P+I=A=P=172 \\
& S \cdot I=\frac{S 167.20-2150=100}{P \times R}=\frac{172 \times 100}{10 \times 2150 \times 4}=\frac{1}{5} \\
& T=\frac{1}{5} \times 365 \text { days }=73 \text { days }
\end{aligned}
$$

[Mount 73 day from $26^{\text {th }}$ Feb 2009]
\Rightarrow he wrice return money after 73 days that mean on 9 may 2009

$$
E x-10 \cdot 2
$$

(1) Pruncibal $27000, R=9 \% \mathrm{p.a}$ $T=2$ yes
for Ist year: $P_{1}=27000$

$$
\begin{aligned}
& \therefore \quad P_{1}=27000 \\
& \text { Inceres }=\frac{P \times R \times I}{100}
\end{aligned}
$$

$$
\text { Interesl }\left(I_{1}\right)=\frac{7000 \times 9 \times 1}{100}=2630
$$

Aml $\left(A_{1}\right)=P_{1}+I_{1}$

$$
\begin{aligned}
& 7000+630 \\
& 7630
\end{aligned}
$$

for 2nd year

$$
\begin{aligned}
P_{2} & =27630 \\
\text { Anterest }\left(I_{2}\right) & \frac{P_{2} \times R \times T}{100} \\
& =\frac{7630 \times 9 \times 1}{100}
\end{aligned}
$$

$$
I_{2} \quad 686.70
$$

$$
\begin{aligned}
\operatorname{art}\left(A_{2}\right) & =P_{2}+I_{2} \\
& =7630+686.70 \\
& =8316.70
\end{aligned}
$$

$$
\begin{aligned}
& =8316.70 \\
\text { Compound Intirest } & =\text { First Ant-Oxiginal Pri } \\
& =\text { A2 } P \\
& =8316.70-7000 \\
& =\$ 1316.70
\end{aligned}
$$

(2) Principal $=₹ 10,000, R=6 \%, T=3$ yrs

For Ist year $=P_{1}=₹ 10,000$

$$
\begin{aligned}
\text { Interest }\left(T_{1}\right) & =\frac{P_{1} \times R \times I}{100} \\
& =\frac{10000 \times 6 \times 1}{100}=₹ 600
\end{aligned}
$$

Amount $\left(A_{1}\right)=P_{1}+I_{1}$

$$
\begin{aligned}
& =10000+600 \\
& =\quad 10,000
\end{aligned}
$$

For and year $P_{2}=210600$

$$
\begin{aligned}
& \text { Interest }\left(I_{2}\right)=\frac{10600 \times 6 \times 1}{100} \\
& =\begin{aligned}
A_{2} & =P_{2}+I_{2} \\
& =10600+636 \\
& =₹ 11236
\end{aligned}
\end{aligned}
$$

For and year

$$
\begin{aligned}
& P_{3}=211236 \\
& I_{3}=\frac{11236 \times 6 \times 1}{100} \\
& \overline{2}{ }^{2} 74.16 \\
& A_{3}=P_{3}+I_{3} \\
&=11236+67416 \\
&=11910.16 \\
& \text { Compound Interest }=A_{3}-P \\
&=11910.16-10000 \\
&=£ 1,910.16
\end{aligned}
$$

(3) $P=\bar{\Sigma} 12,000, \quad R=5 \%, \quad T=2$ yrs
for Ist year

$$
\begin{aligned}
P_{1} & =\frac{P_{1} \times R \times T}{100} \\
& =\frac{12000 \times 5 \times 1}{100} \\
I_{1} & =600 \\
A_{1} & =P_{1}+I_{1} \\
& =12000+600 \\
& =12600
\end{aligned}
$$

for and year $P_{2}=12,600$

$$
\begin{aligned}
\text { r and year } & =\frac{12600 \times 5 \times 1}{100} \\
I_{2} & =I_{2}=2630 \\
A_{2} & =P_{2}+I_{2} \\
& =12600+630 \\
& =213,230
\end{aligned}
$$

compound Interest $=A_{2}-P$

$$
\begin{aligned}
t & =A_{2}-p \\
& =13230-12000 \\
& =1230
\end{aligned}
$$

(4)

$$
\begin{aligned}
& P=220000 \\
& R=12 \% \\
& T=3 \mathrm{yrs}
\end{aligned}
$$

For Ist year - $P_{1}=\mp 20,000$

$$
\begin{aligned}
\text { For Hst }
\end{aligned} \begin{aligned}
I_{1} & =\frac{P_{1} \times R \times I}{100} \\
& =\frac{20,000 *}{100} \\
& =2400 \\
A_{1} & =P_{\neq}+I_{\neq} \\
& =20000+2400 \\
& =\mp 22,400
\end{aligned}
$$

$$
=\frac{20,000 * 12 \times 3}{100}
$$

For and yeare: $P_{2}=22400$

$$
\begin{aligned}
I_{2} & =\frac{22400 \times 12 \times 1}{100} \\
& =\Psi 2,688 \\
A_{2} & =P_{2}+I_{2} \\
& =22400+2688 \\
& =25088
\end{aligned}
$$

Foo ard year: $P_{3}=\mp 25088$

$$
\begin{aligned}
I_{3} & =\frac{25088 \times 12 \times 1}{100} \\
& = \pm 3010.56 \\
\hat{\sim} 3 & =P_{3}+I_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =25088+3010.56 \\
& =28,09856
\end{aligned}
$$

(i) Amp $=228098.5 \mathrm{r}$
(ii)

$$
\begin{aligned}
\therefore C I & =A_{3}-P \\
& =28098.56-20,000 \\
& =28098.56
\end{aligned}
$$

(5) $P=235,000$

$$
R=5 \%
$$

$$
T=3 \text { yrs }
$$

For Ist year $P_{1}=35000$

$$
\begin{aligned}
I_{1} & =\frac{35000 \times 5 \times 1}{100} \\
I_{1} & =1750
\end{aligned}
$$

Interest of 2 nd year $=\mp 1750$

$$
\begin{aligned}
A_{1} & =P_{1}+I_{1} \\
& =35000+1750 \\
& =36,750
\end{aligned}
$$

for Ind year $P_{2}=\mp 36750$

$$
\begin{aligned}
T_{2} & =\frac{36750 \times 5 \times 1}{100} \\
& =₹ 18375
\end{aligned}
$$

(ii). Interest for and year $=\mp 18375$

$$
\begin{aligned}
A_{2} & =P_{2}+I_{2} \\
A_{2} & =36750+1837.5 \\
& =\overline{2} 38587.5
\end{aligned}
$$

(iii) Amt at the end of 34 year $=₹ 38557.5$ for ind year:

$$
\begin{aligned}
& P_{3}=\bar{F} 38587.5 \\
& I_{3}=\frac{38587.5 \times 5 \times 1}{100} \\
&=1929.375 \\
& I_{3}=1929.38
\end{aligned}
$$

Th: interest for the zed year $=\mp 1929.38$
(6) $P=215,000, R=8 \%, T$-Byes for Is year :

$$
\begin{aligned}
& \text { For Sst year: } \quad P_{1}=15000 \\
& I_{1}=\frac{15000 \times 8 \times 1}{100} \\
& I_{1}=1200 \\
& A_{1}=P_{1}+I_{1} \\
& =15000+1200 \\
& =\neq 16200
\end{aligned}
$$

For and year:

$$
\begin{aligned}
& \text { and year } P_{2}=16200 \\
& I_{2}=\frac{16200 \times 8 \times 1}{100} \\
&=\neq 1296 \\
& A_{2}=P_{2}+I_{2} \\
&=16200+1296 \\
&=17496
\end{aligned}
$$

(i) C.I for and year $=A_{2}-P$

$$
\begin{aligned}
& =17496-15000 \\
& =2496
\end{aligned}
$$

for hd year:

$$
\begin{aligned}
& P_{3}=17496 \\
&=\frac{17498 \times 8 \times 1}{100} \\
&=1399.68 \\
& A_{3}=P_{3}+T_{3} \\
&=17496+1399.68 \\
&={ }^{2} 18895.68
\end{aligned}
$$

(ii) \therefore the sum due at the end of ord year $=\mp 18895.68$

$$
E x-10 \cdot 2
$$

(7) $P=\sum 30,000 \quad R=15 \%$ for Ist year

$$
\begin{aligned}
& P_{1}=30,000 \\
& I_{1}=\frac{30000 \times 15 \times 1}{100} \\
&=Z 4500 \\
& A=P_{1}+I_{1} \\
&=30000+4500 \\
& 34500
\end{aligned}
$$

For 2 nd year:

$$
\begin{aligned}
& P_{2}=34500 \\
& I_{2}=\frac{34500 \times 15 \times 1}{100} \\
&=5175 \\
& A_{2}=P_{2}+I_{2} \\
&=34500+5175 \\
&=39675
\end{aligned}
$$

\therefore Interest during and year $=A_{2}-p$

$$
\begin{aligned}
& =39675-300001 \\
& =\{9675
\end{aligned}
$$

(8) $P=\mp 6000$

Retarate of interest $=R \%$
for Ist year: $\quad P_{1}=6000$

$$
\begin{aligned}
I_{1} & =\frac{6000 \times R \times 1}{100} \\
\therefore I_{1} & =60 \mathrm{Ci} \\
\therefore A_{1} & =P_{1}+I_{1}
\end{aligned}
$$

duct A, ie the sum amounts at the
end of one year $=₹ 6540$

$$
\begin{aligned}
\therefore A_{1} & =600+I_{1} \\
6540 & =6000+60 R \\
6540-6000 & =60 R \\
60 R & =540 \\
R & =\frac{540}{60} \\
R & =9 \% \text { p.a }
\end{aligned}
$$

now by
(1) $I_{1}=60 \times 9$

$$
\begin{aligned}
\therefore A_{1} & =P_{1}+I_{1} \\
& =6000+540 \\
& =6540
\end{aligned}
$$

for and year:

$$
\begin{aligned}
& P_{2}=6540 \\
& I_{2}=\frac{6540 \times 9 \times 1}{1000}=588.6 \\
& I=A_{2}=P_{2}+I_{2} \\
&=4494400506540+588.6 \\
&=₹ 494 \quad 7128.6
\end{aligned}
$$

(iii) \therefore amt al the end of and year

$$
=\sum 7128 \cdot 6
$$

(9) $P=Z 4000$

Rate of interest for successive yrs are 5% of 7%

$$
T=2 \text { yrs }
$$

$\left\{\right.$ means for $2 y \mathrm{~s}$: for $I_{s t}$ year, we use $R=5 \%$, for 2 year, we use $R=7 \%$
for Inst year: $\begin{aligned} P_{1} & =4000 \\ R & =5 \%\end{aligned}$

$$
R=5 \%
$$

$$
\begin{aligned}
\therefore I_{1} & =\frac{P_{1} \times R \times T}{100} \\
& =\frac{4000 \times 5 \times 1}{100} \\
I_{1} & =200 \\
A_{1} & =P_{1}+I_{1} \\
& =4000+200 \\
& =\mp 4200
\end{aligned}
$$

for 2nd year: $\quad P_{2}=4200$

$$
\begin{aligned}
& I_{2}=\frac{4200 \times 7 \times 1}{100} \\
&=294 \\
& A_{2}=P_{2}+I_{2} \\
&=4200+294 \\
&=4494 \\
& A_{2}=4494 \\
& C I=A_{2}-P \\
&=4494-4000 \\
&=\$ 494
\end{aligned}
$$

Q10 Samo as Q9 Do by yourself
(i1)

$$
\begin{aligned}
& P= \pm 8500 \quad R=6 \% \\
& \text { firstly, S.I }=\frac{P \times R \times I}{100} \\
&=\frac{8500 \times 6 \times 2}{100} \\
&=\{1020
\end{aligned}
$$

now Ist year: $\quad P_{1}=8500$

$$
\begin{aligned}
& I_{1}=\frac{P_{1} \times R \times T}{100} \Rightarrow \frac{8500 \times 6 \times 1}{100} \\
& I_{1}=510
\end{aligned}
$$

$$
\begin{aligned}
A_{1} & =P_{1}+I_{1} \\
& =8500+510 \\
& =9010
\end{aligned}
$$

for 2 nd year $\quad P_{2}=9010$

$$
\begin{aligned}
I_{2} & =\frac{9010 \times 6 \times 1}{100} \\
& =540.6 \\
A_{2} & =P_{2}+I_{2} \\
& =9010+540.6 \\
& =9550.6 \\
C \cdot I & =A_{2}-P \\
& =9550.6-8500 \\
& =\sum 1050.6
\end{aligned}
$$

Difference between $\mathbb{C}-I$ and $S \cdot I$

$$
\begin{aligned}
& =1050 \cdot 6-1020 \\
& =230.6
\end{aligned}
$$

(12)

$$
\begin{aligned}
P & =₹ 10,000, R=6 \% \quad, T=2 y r s \\
S \cdot I & =\frac{\rho \times R \times T}{100} \\
& =\frac{10000 \times 6 \times 2}{100} \\
S . I_{:} & =\Sigma 1200
\end{aligned}
$$

for Ist year $P_{1}=10000$

$$
\begin{aligned}
I_{1} & =\frac{10000 \times 6 \times 1}{100} \\
I_{1} & =600 \\
A_{1} & =P_{1}+I_{1} \Rightarrow 10000+600 \\
& =106000
\end{aligned}
$$

for and year $P_{2}=10600$

$$
\begin{aligned}
& I_{2}=\frac{10600 \times 6 \times 1}{100} \\
& I_{2}=636 \\
& A_{2}=P_{2}+I_{2} \\
& C \cdot I=10600+636 \\
& C \cdot 11236
\end{aligned}
$$

now the excess amt that he booed is the difference b / ω C.I and $S \cdot I$

$$
\begin{aligned}
\therefore \text { Diff b/w C.I \& S.I } & =1236-1200 \\
& =\{36
\end{aligned}
$$

(13) Let Principal $=x$

$$
\begin{aligned}
& R=5 \% \\
& T=2 \text { yrs }
\end{aligned}
$$

$S . T=P \times R \times T=\frac{x \times 5 \times x}{100}$

$$
\begin{align*}
S \cdot I & =\frac{x}{10} \tag{1}\\
\text { now } C \cdot I & =A-P \\
{[\text { As } A} & \left.=P\left(1+\frac{R}{100}\right)^{T}\right] \\
\therefore C \cdot I & =P\left(1+\frac{R}{100}\right)^{T}-P \\
& =x\left(1+\frac{5}{100}\right)^{2}-x \\
& =x\left[\left(1+\frac{5}{100}\right)^{2}-1\right] \\
& \left.=x\left[\left(1+\frac{1}{20}\right)^{2}-1\right]\right]=x\left[\left(\frac{21}{20}\right)^{2}-1\right] \\
& =x\left[\left(\frac{20+1}{20}\right)^{2}-1\right]
\end{align*}
$$

$$
\begin{aligned}
& =x\left[\begin{array}{ll}
21 \times 21 & -1] \\
20 \times 20
\end{array}\right] \\
& =x\left[\frac{441}{400}-1\right] \\
& =x\left[\frac{441-400}{400}\right] \Rightarrow x\left(\frac{41}{400}\right)
\end{aligned}
$$

$$
\begin{equation*}
C . T=\frac{41}{400} x \tag{2}
\end{equation*}
$$

As difference b/w CI and $S \cdot I=\overline{2} 2.50$

$$
\text { ie } C \cdot I-S \cdot I=2.50
$$

Put values of $C \cdot I, S \cdot I$ from (1) (2)

$$
\begin{gathered}
\frac{41}{400} x-\frac{x}{10}=2.50 \\
\frac{1}{10}\left(\frac{41}{40} x-x\right)=2.50 \\
\frac{41 x-x}{40}=2.50 \times 10 \\
\frac{41 x-\frac{40 x}{40}}{}=25 \\
\frac{x}{40}=25 \\
x=25 \times 40 \\
x=1000 \\
\therefore \text { Principal }=\$ 1000
\end{gathered}
$$

(14)

$$
\begin{gathered}
P=\bar{Z} 1500, R=12 \%=\frac{12}{4}=3 \% \\
T=9 \text { months }=\frac{9}{12}=\frac{3}{4} \text { yrs } \\
\frac{3}{4} \times 4=3 \text { yrs }
\end{gathered}
$$

So $A=P\left(1+\frac{R}{100}\right)^{T}$

$$
\begin{aligned}
& =1500\left(1+\frac{3}{100}\right)^{3} \\
& =1500\left(\frac{100+3}{100}\right)^{3} \\
& =1500\left(\frac{103}{100}\right)^{3} \\
& =1500 \times \frac{103}{100} \times \frac{103}{100} \times \frac{103}{100} \\
& =\frac{16390905}{10000}=1639.0905 \\
& =1639.09
\end{aligned}
$$

$$
\begin{aligned}
C \cdot I & =A-P \\
& =1639.09-1500 \\
& =139.09 \\
C \cdot I & =£ 139
\end{aligned}
$$

(15) $P=$ 玉 $12,000 \quad R=5 \% \quad T=4$ yrs
for Ist year,

$$
\begin{aligned}
& \text { r } A=P\left(P+\frac{R}{100}\right)^{\top} \\
& =12000\left(1+\frac{5}{100}\right)^{\prime} \\
& =12000\left(1+\frac{1}{20}\right)^{\prime} \\
& =12000\left(\frac{20+1}{20}\right) \Rightarrow 12000 \times \frac{21}{20} \\
& =600 \times 21=126 \mathrm{co}
\end{aligned}
$$

$$
\begin{aligned}
\text { C. I for Est year } & =A-P \\
& =12600-12000 \\
& =\mp 600
\end{aligned}
$$

for and year

$$
P_{2}=12600
$$

$$
\begin{aligned}
A= & P\left(1+\frac{R}{100}\right)^{\top} \\
= & 12600\left(1+\frac{S}{100}\right)^{\prime} \\
= & 12600\left(1+\frac{1}{20}\right) \\
= & 12600\left(\frac{20-11}{20}\right) \Rightarrow 12600 \times \frac{21}{20} \\
= & 630 \times 21=13230
\end{aligned}
$$

$$
\begin{aligned}
\text { C.I for and year } & =A-P_{2} \\
& =13230-12600 \\
& =\bar{\sum} 630
\end{aligned}
$$

$$
\varepsilon x-12.1
$$

(1) (i) $(x+6)(x-6)=x^{2}-5^{2}$

$$
=x^{2}-36 \quad\left[(a+b)(a-b)=a^{2}-b^{2}\right]
$$

(ii) $(3 x+5)$

$$
(3 x-5)=(3 x)^{2}-(5)^{2}
$$

$$
=9 x^{2}-25 \quad\left[(a+b)(a-b)=a^{2}-b^{2}\right]
$$

2 (i) do yourself
(ii) $\left(7-\frac{2}{3} x\right)\left(7+\frac{2}{3} x\right)=(7)^{2}-\left(\frac{2}{3} x^{2}\right)$

$$
=49-\frac{4}{9} x^{2}
$$

3(i)

$$
\begin{aligned}
\left(\frac{2}{3} a+\frac{4}{5} b\right)\left(\frac{2}{3} a-\frac{4}{5} b\right) & =\left(\frac{2}{3} a\right)^{2}-\left(\frac{4}{5}\right)^{2} \\
& =\frac{4}{9} a^{2}-\frac{16}{25} b^{2}
\end{aligned}
$$

(ii) Do yourself
(4) (i) $(x y+3)(x y-3)=(x y)^{2}-(3)^{2}=x^{2} y^{2}-9$
(ii) Do yourself
(5) ci $(0.4 a-0.3 b)(0.4 a+0.3 b)=(0.4 a)^{2}-(0.3 b)^{2}$

$$
=0.16 a^{2}-0.99 b^{2}
$$

(ii), Do yourself
(6) $\begin{aligned} \text { ci) }\left(x y^{2}+x^{2} y\right)\left(x y^{2}-x^{2} y\right) & =\left(x y^{2}\right)^{2}-\left(x^{2} y\right)^{2} \\ & =x^{2} y^{4}-x^{4} y^{2}\end{aligned}$

$$
=x^{2} y^{4}-x^{4} y^{2}
$$

(ii) 20 yourself
(7) ci$)$

$$
\begin{aligned}
(x+5)(x-5)\left(x^{2} y^{2}+x^{25} y\right) & =\left(x^{2}-5^{2}\right)\left(x^{2}+25\right) \\
& =\left(x^{2}-25\right)\left(x^{2}+25\right) \\
& =\left(x^{2}\right)^{2}-(25)^{2} \\
& =x^{4}-625
\end{aligned}
$$

(iii) Hin in

8 (i) same as (7)
(ii) $\left(a^{2} b^{2}+x^{2} y^{2}\right)\left(a^{2} b^{2}-x^{2} y^{2}\right)\left(a^{4} b^{4}+x^{4} y^{4}\right)$

$$
\begin{aligned}
& {\left[\left(a^{2} b^{2}\right)^{2}-\left(x^{2} y^{2}\right)^{2}\right]\left(a^{4} b^{4}+x^{4} y^{4}\right)} \\
& \left(a^{4} b^{4}-x^{4} y^{4}\right)\left(a^{4} b^{4}+x^{4} y^{4}\right) \\
& \left(a^{4} b^{4}\right)^{2}-\left(x^{4} y^{4}\right)^{2} \\
& a^{8} b^{8}-x^{8} y^{8}
\end{aligned}
$$

(9) (1)

$$
\begin{aligned}
207 \times 193 & =(200+7) \times(200-7) \\
& =(200)^{2}-(7)^{2} \\
& =40000-49 \\
& =39951
\end{aligned}
$$

(ii) same as (i) $703 \times 697=(700+3)(700-3)$
(10) (i)

$$
\begin{aligned}
11.5 \times 10.5 & =(11+0.5)(11-0.5) \\
& =(11)^{2}-(0.5)^{2} \\
& =121-0.25 \\
& =120.75
\end{aligned}
$$

(ii) Do yourself

$$
1.07 \times 0.93=(1+0.07)(1-0.07)
$$

$$
\varepsilon x-12.2
$$

Identitics used: $(a+b)^{2}=a^{2}+b^{2}+2 a b$ I $(a-b)^{2}=a^{2}+b^{2}-2 a b$ II
(1) i) $\left(4 x+\frac{7 y}{a}\right)^{2}$
by using $(a+b)^{2}=a^{\prime}+b^{2}+2 a b$

$$
\begin{aligned}
& =(4 x)^{2}+(7 y)^{2}+2(4 x)(7 y) \\
& =16 x^{2}+49 y^{2}+56 x y
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(\frac{2}{3} x+\frac{3}{4} y\right)^{2} & =\left(\frac{2}{3} x\right)^{2}+\left(\frac{3}{4} y\right)^{2}+2\left(\frac{2}{3} x\right)\left(\frac{3 y}{4} y\right) \\
& =\frac{4}{9} x^{2}+\frac{9}{16} y^{2}+x y
\end{aligned}
$$

(2) (i) $(\sqrt{2} x+3 y)^{2}=(\sqrt{2} x)^{2}+(3 y)^{2}+2(\sqrt{2} x)(3 y)$

$$
=2 x^{2}+9 y^{2}+6 \sqrt{2} x y
$$

(ii) Do yourself
(3) (i) $\left(2 x+\frac{1}{3 x}\right)^{2}=(2 x)^{2}+\left(\frac{1}{3 x}\right)^{2}+2(2 x)\left(\frac{1}{3 x}\right)$

$$
=4 x^{2}+\frac{1}{9 x^{2}}+\frac{4}{3}
$$

(ii) Do yourself
(4) (i)

$$
\begin{aligned}
(203)^{2} & =(200+3)^{2} \\
& =(200)^{2}+(3)^{2}+2(200)(3) \\
& =40000+9+1200 \\
& =41209
\end{aligned}
$$

(ii) $(14.3)^{2}=\frac{(14+0.3)^{2}}{200 \text { yourself }}$

II (5) (i) $(3 x-7 y)^{2}$ [use identity $\left.=(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$

$$
\begin{aligned}
& =(3 x)^{2}+(7 y)^{2}-2(3 x)(7 y) \\
& =9 x^{2}+49 y^{2}-42 x y
\end{aligned}
$$

(ii) do yourself
(6) (i) $(\sqrt{3} x-\sqrt{5} y)^{2}=(\sqrt{3} x)^{2}+(\sqrt{5} y)^{2}-2(\sqrt{3} x)(\sqrt{5} y)$

$$
=3 x^{2}+5 y^{2}-2 \sqrt{15} x y
$$

(ii)

$$
\begin{aligned}
\left(\frac{1}{\sqrt{3}} x-\frac{1}{\sqrt{5}} y\right)^{2} & =\left(\frac{1}{\sqrt{3}} x\right)^{2}+\left(\frac{1}{\sqrt{5}} y\right)^{2}-2\left(\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{5}} y\right) \\
& =\frac{x^{2}}{3}+\frac{y^{2}}{5}-\frac{2 x y}{\sqrt{15}} \times \sqrt{15} \sqrt{15} \\
& =\frac{x^{2}}{3}+\frac{y^{2}}{5}-\frac{2 \sqrt{15} x y}{15}
\end{aligned}
$$

(7) (i) $\left(3 x-\frac{1}{3 x}\right)^{2}=(3 x)^{2}+\left(\frac{1}{3 x}\right)^{2}-2(3 x)\left(\frac{1}{3 x}\right)$

$$
=9 x^{2}+\frac{1}{9 x^{2}}-2
$$

(ii) do yourself
(8) (i) $(197)^{2}=(200-3)^{2}$ sotve it
(11) $(13.96)^{2}=(14-0.04)^{2}$ solve it
(15)(i) $4 x^{2}+12 x y+9 y^{2}=4 x^{2}+9 y^{2}+12 x y$

$$
\begin{aligned}
& =(2 x)^{2}+(3 y)^{2}+2(2 x)(3 y) \\
& =(2 x+3 y)^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
16 x^{2}+36 y^{2}+48 x y & =(4 x)^{2}+(6 y)^{2}+2(4 x)(6 y) \\
& =(4 x+6 y)^{2}
\end{aligned}
$$

(iII)

$$
\begin{aligned}
& 9 x^{2}-54 x y+81 y^{2} \\
& =9 x^{2}, 81 y^{2}-54 x y \\
& =(3 x)^{2}+(9 y)^{2}-2(3 x)(0 y) \\
& \quad(3 x-9 y)^{2}
\end{aligned}
$$

(iv) do yourself

$$
\begin{aligned}
& \qquad x-183 \\
& a+b-4, \quad a b=3, a^{2}+b^{2}=? \\
& (a+b)^{2}=a^{2}+b^{2}+2 a b \\
& (4)^{2}=a^{2}+b^{2}+2(3) \\
& 16=a^{2}+b^{2}+6 \\
& a^{2}+b^{2}=16-6 \Rightarrow a^{2}+b^{2}=10
\end{aligned}
$$

(1)i)
(ii) $a^{2}+b^{2}=25, a b=12, a+b=$?

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+b^{2}+2 a b \\
(a+b)^{2} & =25+2(12) \\
& =25+24 \\
& =49 \\
(a+b) & = \pm \sqrt{49} \\
a+b & = \pm 7
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (a-b)^{2}=a^{2}+b^{2}-2 a b \\
& (a-b)^{2}=25-2(12) \\
& (a-b)^{2}=25-24 \\
& (a-b)^{2}=1 \\
& a-b= \pm \sqrt{1}= \pm 1
\end{aligned}
$$

(3) (1) $x+\frac{1}{x}=7, x^{2}+\frac{1}{x^{2}}=$?

$$
\left(x+\frac{1}{x}\right)^{2}=(7)^{2} \quad \text { (sq both sides) }
$$

$$
\begin{gathered}
x^{2}+\frac{1}{x^{2}}+2(x)\left(\frac{1}{x}\right)=49 \\
x^{2}+\frac{1}{x^{2}}+2=49 \\
x^{2}+\frac{1}{x^{2}}=49-2 \\
x^{2}+\frac{1}{x^{2}}=47
\end{gathered}
$$

(3) (ii)

$$
\begin{aligned}
& x^{2}+\frac{1}{x^{2}}=83, x-\frac{1}{x}=? \\
& \begin{aligned}
\left(x-\frac{1}{x}\right)^{2} & =x^{2}+\frac{1}{x^{2}}-2(x)\left(\frac{1}{x}\right) \\
& =83-2 \\
& =81 \\
x-\frac{1}{x} & = \pm \sqrt{81} \\
x-\frac{1}{x} & =+9 \text { ons }
\end{aligned}
\end{aligned}
$$

$$
\varepsilon x-16 \cdot 1
$$

(1) Three angles of quadrilateral are $62^{\circ}, 118^{\circ}$
$\alpha 70^{\circ}$

Let fourth angle be x
by Angle sum property of quad, the sum of angles of quad is 360°

$$
\begin{gathered}
\therefore \quad 62^{\circ}+118^{\circ}+70^{\circ}+x^{\circ}=360 \\
250+x=360 \\
x=360-250 \\
x=110
\end{gathered}
$$

$\therefore 4^{\text {th }}$ angle is 110°
(2) Let equal angles be x, x by Angle sum property.
sum of all angles $=360^{\circ}$

$$
\begin{aligned}
136+x+x & =360 \\
2 x & =360-136 \\
2 x & =224 \\
x & =\frac{224}{2}
\end{aligned}
$$

\therefore Equal Angles are $112^{\circ}, 112^{\circ}$
(3) a) Ratio of angles $=1: 1: 1: 3$

Let the angles be $x, x, x, 3 x$
sum of angles $=360^{\circ}$ (by angle sum pro.) of quad

$$
\begin{gathered}
x+x+x+3 x=360^{\circ} \\
6 x=360^{\circ} \Rightarrow x=\frac{360^{6}}{6} \\
x=60^{\circ}
\end{gathered}
$$

\therefore The angles are $60^{\circ}, 60^{\circ}, 60^{\circ}, 3 \times 60^{\circ}$ ie $60^{\circ}, 60^{\circ}, 60^{\circ}, 180^{\circ}$
(b) no, as the $4^{\text {th }}$ angle is 180 and a quad canst has any of its angle equal to 18 .
(4) Ratio of three angles $=2: 3: 4$

Let three angles be $2 x, 3 x, 4 x$
Now sum of Est and 3nd angle $=180^{\circ}$

$$
\begin{aligned}
& \Rightarrow \quad 2 x+4 x=180^{\circ} \\
& 6 x=180^{\circ} \Rightarrow x=\frac{180}{6} \\
& x=30
\end{aligned}
$$

\therefore Three angles are 2(30), 3(30), 4(30)
ic $60^{\circ}, 90^{\circ}, 120^{\circ}$
Let y be $4^{\text {th }}$ angle
By angle sum prop, sum of angles $=360^{\circ}$

$$
\begin{gathered}
60^{\circ}+90^{\circ}+120^{\circ}+y=360^{\circ} \\
270+y=360^{\circ} \\
y=360^{\circ}-270^{\circ} \\
y=90^{\circ}
\end{gathered}
$$

\therefore all the angles of quad are $60^{\circ}, 90^{\circ}, 120^{\circ}, 0^{\circ}$
(5) Ratio of angles $=2: 3$

Let the angles be $=2 x, 3 x$
other two angles of quad are $70^{\circ}, 40^{\circ}$ by angle sum prop.

$$
\begin{aligned}
& 70+40+2 x+3 x=360^{\prime} \\
& 110+5 x=360^{\circ} \\
& 5 x=360-110 \\
& x=\frac{250}{5} 50 \quad \Rightarrow x=50
\end{aligned}
$$

\therefore angles are $2(50), 3(50)$
$100,150^{\circ}$
\therefore all the angles of quad are $70^{\circ}, 40^{\circ}, 150^{\circ}, 150^{\circ}$
(6) (i) by angle sum prop, sum of angle 360

$$
\angle A+\angle B+\angle C+\angle D-360
$$

$$
90+6 x-5+7 x-15+2 x+5=360
$$

$$
90-15+6 x+7 x+2 x-360
$$

$$
75+15 x=360
$$

$$
15 x=360-75
$$

$$
15 x=285 \Rightarrow x=\frac{285}{15}
$$

$$
x=19
$$

(ii)

$$
\begin{aligned}
& \angle B=6 x-5 \Rightarrow 6(19)-5=114-5=109^{\circ} \\
& \angle C=7 x-15 \Rightarrow 7(19)-15=133-15=118^{\circ}
\end{aligned}
$$

(7) Given angles of quad are $(4 x),(12 x+15)^{\circ}$. $(5 x-30)^{\prime}$ \& $(x+3)^{\circ}$
(a) by angle sum prop, sum of all angles $=360^{\circ}$

$$
\begin{gathered}
4 x+(2 x+15)+(5 x-30)+(x+3)=360^{\circ} \\
4 x+2 x+5 x+x+15+3-30=360 \\
12 x-12=360 \\
12 x=360+12 \\
x=\frac{372}{12} \Rightarrow 31
\end{gathered}
$$

(b) angles are: $4 x=4 \times 31=124^{\circ}$

$$
\begin{aligned}
& 2 x+5=2(31)+15=62+15=77^{\circ} \\
& 5 x-30=5(31)-30=155-30=125^{\circ} \\
& x+3=31+3=34^{\circ}
\end{aligned}
$$

(8) In quad $A B C D, A D \| B C$

$$
\begin{aligned}
\angle A: \angle B & =2: 3 \\
\frac{\angle A}{\angle B} & =\frac{2}{3}
\end{aligned}
$$

Let $\angle A=2 x, \angle B=3 x$
 A: $\angle A$ and $\angle B$ are adjacent angles of given

$$
\begin{gathered}
\therefore \angle A+\angle B=180^{\circ} \quad \text { (Sum of adjacent } \\
2 x+3 x=180^{\circ} \text { is } 180^{\circ} \\
5 x=180 \\
x=\frac{180}{8} 36^{\circ} \\
x=36 \\
\Rightarrow \angle A=2(36)=72 \quad \angle B=3(36)=108^{\circ} \\
\text { Similarly } \angle C=\angle D=4: 5 \\
\text { Let } \angle C=4 y, \quad \angle D=5 y \\
\text { are adjacent angles }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Let } \angle C=4 y, ~ \\
& \angle C+\angle D \text { are adjacent angles }
\end{aligned}
$$

$$
\therefore \angle C+\angle D=180^{\circ}
$$

$$
\begin{gathered}
4 y+5 y=180^{\circ} \\
\hline 4=180^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
9 y & =180^{\circ} \\
4 & =180
\end{aligned}
$$

$$
\begin{aligned}
& 9 y=\frac{180}{9} 20 \Rightarrow y=20
\end{aligned}
$$

$$
\angle C=4(20)=80^{\circ}, \angle D=5(20)=100
$$

(9)(i) In $\triangle A D C$, by angle sum prop, sum of angles of $a x$ is 180°

$$
\begin{gathered}
\Rightarrow \quad x+(4 x-10)+(4 x+10)=180^{\circ} \\
x+4 x+4 x-10+10=180^{\circ} \\
9 x=180^{\circ} \\
x=\frac{180}{9} \Rightarrow x=20^{\circ}
\end{gathered}
$$

(iii) $\angle A D C=4 x-10=4(20)-10=80-10=70^{\circ}$
(ii) firstly $\angle B A C=3 x+15$

$$
=3(20)+15=60+15=75^{\circ}
$$

now in $\triangle A B C$, by angle sum property sum of all angles of triangle is 180°
$\therefore \angle B A C+\angle B+\angle A C B=180^{\circ}$

$$
75+80+\angle A C B=18
$$

$$
\angle A C B=180-155
$$

$$
=25^{\circ}
$$

(10) $\angle A=66^{\circ}, \angle B=(\angle C+16)^{\circ}, \quad \angle C=6(y+4)^{\circ}$
by angle sum prop, sum of angler of quad is 360°

$$
\begin{aligned}
& \angle A+\angle B+\angle C+\angle D=360^{\prime} \\
& 66+\angle C+16+6(x+4)+\angle A-16=360 \\
& 66+6(x+4)+16+6(x+4)+66-16=360 \\
& 66+6 x+24+16+6 x+24+66-16=360^{\circ} \\
& 12 x+180=360 \\
& 12 x=360-180^{\circ} \\
& 12 x=180 \Rightarrow x=\frac{180}{12} 15
\end{aligned}
$$

$$
\begin{gathered}
x=15 \\
\angle C=6(x+4)=6(15+4)=6(19)=114 \\
\angle B=\angle C+16=114+16=130 \\
\end{gathered}
$$

$$
\begin{aligned}
& \angle B=\angle C+16=66-16=50 \\
& \angle D=\angle A-16=E_{J}
\end{aligned}
$$

(11) As
$\angle 1+y=180^{\circ}$ (Linear pair)
$\angle 1-180-y$
Also, $\angle 2+y=180^{\circ}$ (LP)

$$
\angle 2=180-x
$$

Now In quad $A B C D$, by angle sum prop.

$$
\begin{gathered}
\angle A+\angle A B C+\angle C+\angle C D A=360^{\circ} \\
a+\angle 1+b+\angle 2=360^{\circ} \\
a+180-y+b+180-x=360 \\
a+b-x-y+360=360 \\
a+b-x-y=360-360 \\
a+b-x-y=0
\end{gathered}
$$

$a+b=x+y$ hence proved
(12) H.W

1

$$
\angle A=\angle B
$$

(1) [given as adjacent angles are equal
\qquad in 11 gm
Also $\angle A=\angle C\{\text { opp angus } \angle B=\angle D \text { are equal }\}^{A}$
by angle sum prop, sum of angles of

$$
\begin{array}{r}
\text { quad is } 360 \tag{2}\\
\angle A+\angle B+\angle C+\angle D=360^{\circ} \\
\angle A+\angle A+\angle A+\angle A=360^{\circ} \\
4 \angle A=360^{\circ} \\
\angle A=\frac{360}{4} 90^{\circ} \\
\angle A=90^{\circ} \\
\\
\angle B=90^{\circ} \\
\text { As } \angle A=\angle B \quad \angle \quad \angle C=90^{\circ} \\
\angle A=\angle C \quad \Rightarrow
\end{array}
$$

\therefore Each angle of parallelogram is 90° $\therefore A B C D$ is a rectangle
(2) Consider $\angle A$ and $\angle B$ as adjacent angle
now $\angle A: \angle B=5: 4$
Let $\angle A=5 x, \quad \angle B=4 x$

$\angle A=\angle C$
$\angle B=\angle D$$\{$ opp angles of 1 lgm are equal\}
$\angle B=\angle D=\angle C=5 x$ and $\angle D=4 x$
now by angle sum prop, sum of angles of 1 lgm is 360°

$$
\therefore \quad \begin{aligned}
& \angle A+\angle B+\angle C+\angle D=360^{\circ} \\
& 5 x+4 x+5 x+4 x=360^{\circ} \\
& 18 x=360 \\
& x=\frac{360}{18} 20 \quad \Rightarrow x=20
\end{aligned}
$$

$$
\begin{aligned}
& \angle A=5 x=5 \times 20=100^{\circ} \\
& \angle B=4 x-4 \times 20=80^{\circ} \\
& \angle A=\angle C \Rightarrow \angle C=100^{\circ} \\
& \angle B=\angle D \Rightarrow \angle D=8 i
\end{aligned}
$$

(3) Consider the adjacent sides as $A B$ and $B C$ Les $B C=x$

$$
A B=25+x
$$

now in $\|$ gm, opp sides are equal

$$
\begin{aligned}
& \text { now in } \| g m, \text { opp } \quad A C=A D \\
& \therefore \quad A C \quad 170
\end{aligned}
$$

now perimeter $=170$.
(pere means sum of all sides)

$$
\begin{aligned}
& \text { Pere means sum } \\
& \therefore A B+B C+C D+D A=180 \\
& 25+x+x+25+x+x=170 \\
& 50+4 x=170 \\
& 4 x=170-50 \\
& 4 x=120 \\
& x=\frac{120}{4} 30 \Rightarrow x=30
\end{aligned}
$$

$$
\begin{aligned}
& \therefore B C=30 \mathrm{~cm} \\
& A B=25+x \Rightarrow 25+30=55 \mathrm{~cm} \\
& A B=D C \Rightarrow D C=55 \mathrm{~cm} \\
& B C=A D \Rightarrow A D=30 \mathrm{~cm}
\end{aligned}
$$

(4) $A B: B C=3: 4$

Let $A B=3 x, \quad B C=4 x$
As in 11 gm
the opposite aider equal

$$
\begin{aligned}
& \text { opposite } \\
& \therefore A B=D C \Rightarrow D C=3 x \\
&
\end{aligned}
$$

and $B C=A D \quad \Rightarrow A D=4 x$

$$
\begin{aligned}
& \Rightarrow A B+B C+D C+A D=84 \\
& 3 x+4 x+3 x+4 x=84 \\
& 14 x=84 \\
& x= \frac{84}{14} 6 \Rightarrow x=6 \\
& \Rightarrow 3 x=3 \times 6=18 \mathrm{~cm} \\
& B C=4 x \Rightarrow 4 \times 6=24 \mathrm{~cm}
\end{aligned}
$$

Is $A B=D C \Rightarrow D C=18 \mathrm{~cm}$

$$
\begin{aligned}
& \text { As } A B=D C \Rightarrow A D=24 \mathrm{~cm} \\
& \text { also } B C=A D \Rightarrow A
\end{aligned}
$$

(5) Given $A B=3 x+2$
and $\angle A=2 \angle B$
(i) As opp angles of 11 gm are equal
$\therefore \quad \angle A=\angle C$ and $\angle B=\angle D$
now by angle sum prop.

$$
\begin{gathered}
\angle A+\angle B+\angle C+\angle D=360^{\circ} \\
2 \angle B+\angle B+\angle A+\angle B=360^{\circ} \\
2 \angle B+\angle B+2 \angle B+\angle B=360^{\circ} \\
6 \angle B=360^{\circ} \\
\angle B=\frac{360}{6} 60^{\circ} \\
\angle B=60^{\circ} \\
\angle A=2 \angle B \Rightarrow \angle C 0^{\circ}=120^{\circ} \\
\angle A \Rightarrow \angle D=120^{\circ} \\
\text { how } \angle A=\angle C \Rightarrow \angle 0
\end{gathered}
$$

(ii) Given $A B=3 x+2, \quad D C=5 x-8$ As opp sides of 11 gro are equal

$$
\begin{aligned}
A B & =D C \\
3 x+2 & =5 x-8 \\
2+8 & =5 x-3 x \\
10 & =2 x \\
2 x & =10 \\
x & =\frac{10}{2} 5 \Rightarrow x=5
\end{aligned}
$$

$$
A B=3(5)+2=15+2=17
$$

(6) $\angle A=\angle C$ (as opp angles of 11 gm are equal

$$
\therefore \angle C=74^{\circ}
$$

Let angle $\angle B=x$
$\angle D=x$
As $\angle B=\angle D$ (opp angles of 1 lgm are equal) Now by angle sum prop,

$$
\begin{gathered}
\angle A+\angle B+C C+\angle D=360 \\
74+x+74+x=360^{\circ} \\
148+2 x=360^{\circ} \\
2 x=360-148 \\
2 x=212 \\
x=\frac{212}{2} \Rightarrow x=106 \\
\therefore \angle B=106, \angle D=106
\end{gathered}
$$

(7) $\angle B=2 x+25$

$$
\angle D=4 x-5
$$

(i) $\angle B=\angle D$ i as opp
 angles of 11 gm are equal)

$$
\begin{gathered}
2 x+25=4 x-5 \\
25+5=4 x-2 x \\
30=2 x
\end{gathered}
$$

$$
\begin{aligned}
& x=\frac{30}{2} 15 \\
& x=15
\end{aligned}
$$

(7) (iii)

$$
\begin{aligned}
& \angle B=2 x+25=2(15)+25=30+25 \\
& \angle B=55^{\circ} \\
& \angle D=4 x-5=4 \times 15-5=60-5 \\
& \angle D=55^{\circ}
\end{aligned}
$$

Also $\angle A=\angle C$ (opp angles of 11 gm are equal) now by angle sum prop.

$$
\begin{gathered}
\angle A+\angle B+\angle C+\angle D=360^{\circ} \\
\angle A+55^{\circ}+\angle A+55=360^{\circ} \\
2 \angle A+110=360^{\circ} \\
2 \angle A=360-110 \\
2 \angle A=250 \\
\angle A=\frac{250}{2} 125 \\
\angle A=125
\end{gathered}
$$

As $\angle A=\angle C \quad \angle \quad \angle C=125^{\circ}$
(8) (i) As $A B \| D C$ and $A C$ is transversal line

$$
\therefore \angle A O B=\angle A C D
$$

Call. angles are equal

$$
\therefore \angle A O B=34^{\circ}
$$

(iii) Similarly $A D \| B C$ and $A C$ is transversal
$\therefore \angle O C B=\angle C A D$ (att angles)

$$
\therefore \quad \angle O C B=36^{\circ}
$$

(iii) find $\angle A D C$

In $\triangle A D C$, by angle sum prop, sum of all angles of \triangle is 180°

$$
\begin{aligned}
& \therefore \quad \angle C A D+\angle A D C+\angle A C D=180^{\circ} \\
& 36^{\circ}+\angle A D C+34^{\circ}=180^{\circ} \\
& 70+\angle A D C=180^{\circ} \\
& \angle A D C=180^{\circ}-70 \\
&=110^{\circ}
\end{aligned}
$$

(9) As diagonals of 11 gm bisect each other

$$
\begin{array}{rl}
& \text { other } \\
\therefore \quad A O & O C \quad-(1)
\end{array}
$$

now in $\triangle A O C$ \& $\triangle C O F$

$\angle 1=\angle 2$ (alt angles, $A B \| C D$ and $A C$ is transversal
$\angle 3=\angle 4$ (vertical opp angles)
$O A=O C \quad($ by (1))
\therefore by $A S A$ congruence

$$
\begin{aligned}
& \therefore \triangle A O E \cong \triangle C O F \\
& \Rightarrow O E=O F \quad(\text { by } C \cdot P \cdot C \cdot T)
\end{aligned}
$$

(9) now $\angle C B A+\angle C B E=180^{\circ}$
(linear pair of angles)

$$
\begin{aligned}
\angle C B A+65^{\circ} & =180^{\circ} \\
\angle C B A & =180^{\circ} 65^{\circ} \\
\angle C B A & =115^{\circ} \text { or } \angle B=115
\end{aligned}
$$

Now $\angle A=\angle B$ (opp angles of 11 gm are equal) By Angle sum prop

$$
\begin{gathered}
\angle A+\angle B+\angle C+\angle D=360^{\circ} \\
\angle A+115+\angle A+115=360^{\circ} \\
2 \angle A+230=360^{\circ} \\
2 \angle A=360-230 \\
\angle A=\frac{130}{2} 65 .
\end{gathered}
$$

$$
\begin{aligned}
& \angle A=65^{\circ} \\
& \angle A=\angle C, \angle C=65
\end{aligned}
$$

Ios $\angle A=\angle C, \Rightarrow$
(11) Io do QII, Do theorem -3 on $\operatorname{Pgno}-1$ gig (unto $O B=O D$) with diagram
(12) (bisector means dividing into 3 equal parts)
As E and F bisect the diagonal AC

$$
A E=E F=F C
$$

Draw diagonal $B D$ that intersect $A C$ at O
now As $A E=C F$
add EF on both sides

$$
\begin{align*}
& A E+E P=C F+E F \\
& \therefore A F=C E \tag{1}
\end{align*}
$$

In $\triangle A B F$ and $\triangle C D E$

$$
A B=C D
$$

(opp sides of 11 gm are equal)

$$
A F=C E \quad \text { by }(1)
$$

and $\quad \angle B A F=\angle D C E$
(altunate angles are equal as $A B \| C D$ and $A C$ is transversal)
\therefore by SAS property of congurence,

$$
\begin{aligned}
& \quad \triangle A B F \cong \triangle C D E \\
& \therefore \quad \angle 1=\angle 2 \quad(B y C . P . C . T)
\end{aligned}
$$

by as they are altunate interior angles
$\therefore D E \| B F$ (hence proved)
(13) Given: $A B C D$ is a 11 gm and diagonals are equal ie $A C=D B$ - (i)

To Prove: $A B C D$ is a rectangle ie we well prove that any angle of $A B C D$ is of 90°

Now in $\triangle A D B$ and $\triangle A B C$
$A D=B C$ Cop sides of 11 gm are equal)
$A C=D B \quad(\because$ by (1))
$A B=A B$ (common sides)
\therefore by SSS property of congruence

$$
\begin{aligned}
& \triangle A D B \cong \triangle A B C \\
& \therefore \angle D A B=\angle A B C \quad(\text { by } C \cdot P \cdot C \cdot T) \\
& \text { or } \angle A=\angle B
\end{aligned}
$$

But $\angle A+\angle B=180^{\circ}$
(As adjacent angles of 11 gm are supplementary).

$$
\begin{array}{r}
\therefore \quad \angle A+\angle A=180^{\circ} \\
2 \angle A=180^{\circ} \\
\angle A=\frac{180}{2} \\
\angle A=90^{\circ}
\end{array}
$$

$A B C D$ ii a rectangle
14 Since $P Q R S$ is a $l l g_{m}$

$$
\begin{equation*}
\therefore P Q \| R S \text { and } P Q=R S \tag{1}
\end{equation*}
$$

And T, U are mid pis
 of $P Q$ and $S R$
\therefore by (1)

$$
\text { 1) } \frac{1}{2} P Q \| \frac{1}{2} R S \text { and } \frac{1}{2} P Q=\frac{1}{2} R S
$$

$\Rightarrow P T \| U R$ and $P T=U R$
As opp sides are parallel and equal \therefore PTRU is also a 11 gm
(15) (i) Since $A B C D$ is a $l l g m$

$$
\begin{aligned}
& \therefore A B=C D \\
& \Rightarrow \frac{1}{2} A B=\frac{1}{2} C D
\end{aligned}
$$

$$
\therefore A E=F C \quad[\because E, F \text { are mid pts }]
$$

(ii) Service $A B C D$ is a 11 gm

$$
\begin{aligned}
& \therefore A B \| C D \\
& \therefore \frac{1}{2} A B \| \frac{1}{2} C D
\end{aligned}
$$

$\Rightarrow A E \| F C$ or $A E$ is parallel to $F C$
(iii) by (i) and (ii), we have
$A E=F L$ and $A E \| F C$
As opp sides of $A E F C$ are equal as well as parallel
$\therefore A E C F$ is a 11 gm .
(16) Since $A B C D$ is a rectangle

$$
\therefore A C=B D
$$

$(\because$ diagonals of rectangle are equal)
now $A C=B D$

$$
\begin{aligned}
& \frac{1}{2} A C=\frac{1}{2} B D \\
& \therefore O A=O D \\
& \therefore \angle 1=\angle 2-(1)
\end{aligned}
$$

-(1) [opp angles to equal] sides are equal
now $\angle 3+100=180^{\circ}$ (angles on straight line)

$$
\begin{aligned}
& \angle 3=180-100 \\
& \angle 3=80
\end{aligned}
$$

Now in $\triangle A O D$, by angle sum prop, sum of all angles of Δ is 180°

$$
\begin{gathered}
\angle 1+\angle 2+\angle 3=180^{\circ} \\
\angle 1+\angle 1+80=180 \\
2 \angle 1=180-80 \\
21=\frac{100}{2} \\
\angle 1=51=\angle 2] \\
\therefore \angle 2=50
\end{gathered}
$$

(i) $\therefore \angle 2=\angle O D A=58$
(ii) $\angle 4=100$ (Vertical opp angles) Since $A B C D$ is a rectangle

$$
\begin{aligned}
\therefore A C & =B D \\
\frac{1}{2} A C & =\frac{1}{2} B D \\
\therefore O C & =O D
\end{aligned}
$$

$$
\left.\begin{array}{c}
-O C=\angle D \text { angler to equal } \\
\angle 5=\angle 6 \\
\text { sides are equal }
\end{array}\right)
$$ sides are equal

Now In $\triangle C O D$, by angle sum prop

$$
\begin{array}{cc}
\angle 5+\angle 6+\angle 4 \\
\angle 5+\angle 5+100=180^{\circ} & (\because \angle 5=\angle 6) \\
2 \angle 5=180-100 & \\
\angle 5=\frac{80}{2} & \angle 5=46=40 \\
\angle 5=40 &
\end{array}
$$

(17) In $\triangle A \cup B$, by pythagoras theorem

$$
\begin{align*}
& h^{2}=b^{2}+p^{2} \tag{1}\\
& (A B)^{2}=A O^{2}+B O^{2}
\end{align*}
$$

In $\triangle B O C$, by bythagorus thm

$$
\begin{equation*}
(B C)^{2}=(B O)^{2}+(C O)^{2} \tag{2}
\end{equation*}
$$

In $\triangle D O C$, by bythagorus thm

$$
\begin{equation*}
(C D)^{2}=(O C)^{2}+(O D)^{2} \tag{3}
\end{equation*}
$$

In $\triangle A O D$, by pythagorus thm.

$$
(A D)^{2}=(O D)^{2}+(O A)^{2}-(4)
$$

by adding (1), (2), (3), (4)

$$
\begin{aligned}
& A B^{2}+B C^{2}+C D^{2}+A D^{2}=A O^{2}+B O^{2}+B O^{2}+C O^{2} \\
&+C O^{2}+O D^{2}+O D^{2}+O A^{2} \\
& A B^{2}+B C^{2}+C D^{2}+A D^{2}=2 A O^{2}+2 B O^{2}+2 C O^{2}+2 O D^{2}
\end{aligned}
$$

since $A B C D$ is rhombus
\therefore diagonals bisect each other
$\therefore O A=O C$ and $B O=O D$
by (5)

$$
\begin{aligned}
& A B^{2}+B C^{2}+C D^{2}+D A^{2}=2 A O^{2}+2 B O^{2}+2 A O^{2}+2 B O^{2} \\
& A B^{2}+B C^{2}+C D^{2}+D A^{2}=4 A O^{2}+40 B^{2} \\
& A B^{2}+B C^{2}+C D^{2}+D A^{2}=4\left(O A^{2}+O B^{2}\right)
\end{aligned}
$$

Hence proved

Chapter - 17
STD-8 $8^{\text {th }}$ (Construction of Quadrilaterats)
Ex-17
(3) (consluction-2)

(5) (Consluuction-2)
(Construction-4)

(6) Do yourself (same as (3))
(7) (Conslruction-5)

(8) Do yourself (Seme as Conshruction-4 on gg 208).
(9) (10) Do youresef (Lame as Q7)

(construction -3)
(12) do yourself (same as Conslenction-4 on Pg-208) (same que as 8).
$8^{\text {th }} \quad$ Chapter- 22
STD-8 Volume and Capacity
18 A $\log 20$.

* Volume: The space occupied/covered by any object is called its volume.
(x) Capacity: The maximum amount that something can contain.
Eg: If a water bottle contain 300 ml water (not more than it) thew 300 ml is the capacity of that bottle.
Ex-22|
(1) Matching:

$$
\begin{array}{ll}
\text { (i) }-a, & \text { (ii) }-f, \\
(v)-b, & \text { (iii) }-g
\end{array}, \text { (iv) }-e \text {, }
$$

(5) $\left\{\begin{array}{l}\text { In (1) sum we matched the filled } \\ \text { jars with the given containers according } \\ t_{0} \text { capacity mentioned on them. }\end{array}\right\}$
(2)
(i) 1 litre $=1000 \mathrm{ml}[$ As $1 . l=1000 \mathrm{ml}$
(ii) $\frac{1}{2}$ litre $=500 \mathrm{ml}$
(iii) $\frac{3}{4}$ litre $=750 \mathrm{ml}$

$$
\begin{aligned}
& \frac{1}{2} l=\frac{1000}{2} \mathrm{~m} l=500 \mathrm{ml} \\
& \frac{3}{4} l=\frac{3}{4} \times 15000=750 \mathrm{ml} \\
& \frac{1}{4} l=\frac{1}{4} \times 1000=250 \mathrm{ml}
\end{aligned}
$$

Chapter finished.

Chapter-6 Ratio And Proportion
$8 \pm D-8^{\text {th }} \quad$ Exercise - 6.2
Diuct Proportion (sign: ∞)
of value of x increase then value of y increase
OR of value of x decrease then value of y decrease
Inverse Proportion
If value of x increase thew value of y decrease.
OR If nalue of x decrease then value of y increase

$$
8 x-6.2
$$

(1) (i) Take $\frac{x}{y} \cdot \frac{A 5}{30_{2}}=\frac{1}{2}, \frac{18}{362}=\frac{1}{2}$

$$
\begin{aligned}
& \frac{4.5}{9}=\frac{45}{9 \times 10}=\frac{48}{20}=\frac{1}{2} \\
& \frac{10.5}{21}=\frac{105}{210}=\frac{1}{2}, \frac{45}{902}=\frac{1}{2}
\end{aligned}
$$

As $\frac{15}{30}=\frac{18}{36}=\frac{4.5}{9}=\frac{10.5}{21}=\frac{45}{90}=\frac{1}{2}$
\therefore given set of variables x and y are in direct proportion.
(ii) $\frac{2}{28_{14}}=\frac{1}{14}, \frac{3.5}{16}=\frac{3.5}{26}$ (no Culturing)

$$
\frac{4^{2}}{147}=\frac{2}{7}, \frac{0.2}{280}=\frac{2}{2800}=\frac{1}{1400}
$$

As $\frac{x}{y}=\frac{2}{28} \neq \frac{3.5}{16} \neq \frac{4}{14} \neq \frac{0.2}{280}$
$\therefore x$ and y are inverse proportion.
(2) Ls Let

x	10	5	x_{1}	3	x_{2}	x_{3}
y_{0}	y_{1}	65	91	y_{2}	104	143

Now as $x \propto y$

$$
\begin{aligned}
\therefore \frac{x}{y} & =\frac{10}{y_{1}}=\frac{5}{65} \quad \text { (cross multiplication) } \\
10 \times 65 & =5 \times y_{1} \\
y_{1} & =\frac{2+0 \times 65}{8}=130
\end{aligned}
$$

Also, $\frac{5}{65}=\frac{x_{1}}{91}$

$$
\begin{aligned}
x_{1} \times 65 & =5 \times 91 \\
x_{1} & =\frac{8 \times 91}{65}+3
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{5}{65} & =\frac{3}{y_{2}} \\
y_{2} \times 5 & =3 \times 65 \\
y_{2} & =\frac{3 \times 65}{8}{ }^{13}=39
\end{aligned}
$$

Now

$$
\begin{aligned}
& \frac{5}{65}=\frac{x_{2}}{104} \\
& x_{2} \times 65=5 \times 104 \\
& x_{2}=\frac{8 \times 1048}{65}=8 \\
& \frac{13}{8}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{5}{65} & =\frac{x_{3}}{143} \\
x_{3} \times 65 & =\frac{5 \times 143}{65} \\
x_{3} & =\frac{5 \times 143}{11} \\
x_{3} & =11
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad x_{1} & =7, \quad x_{2}=8, \quad x_{3}=11 \\
y_{1} & =130, \quad y_{2}=39
\end{aligned}
$$

Ans.
(3) Do yourself (same as 2)
(4) Let consider the missing values

x	45	x_{1}	90	x_{2}	22.5	x_{3}
y	1	1.5	y_{1}	6	y_{2}	3

As $x \propto \frac{1}{y}$ ie. x is inversely proportion
ie. $\quad 45 \times 1=x_{1} \times 1.5$

$$
x_{1}=\frac{45}{1.5}=\frac{3}{45 \times 10}=30
$$

Now $45 \times 1=90 x y 1 \Rightarrow 45=90 y_{1}$

$$
y_{1}=\frac{4 \beta}{96_{2}}=\frac{1}{2}=0.5
$$

Now $45 \times 1=x_{2} \times 6$

$$
x_{2}=\frac{45}{62}^{15}=\frac{15}{2}=7.5
$$

Ale, $45 \times 1=22.5 x y_{2}$

$$
y_{2}=\frac{45}{22.5}=\frac{45 x+0}{225}=2
$$

Now, $\quad 45 \times 1=x_{3} \times 3$ 5,

$$
x_{3}=\frac{45^{15}}{3}=15
$$

$$
\begin{aligned}
\therefore \quad x_{1} & =30, \quad x_{2}=7.5, \quad x_{3}=15 \\
y_{1} & =0.5, \quad y_{2}=2
\end{aligned}
$$

Ans,
5. i) As $7.5: 6$ and $x: 18$ are in direct prop.
then $7.5: 6 \div x!18$
Now POM $=P 0 \varepsilon$

$$
\begin{aligned}
& 6 \times x=7.5 \times 18 \\
& x=\frac{75 \times+83}{-6 \times 10}=\frac{225}{10} \\
& x=22.5
\end{aligned}
$$

ii) As $\frac{2}{3}: \frac{4}{15}$ \& $x: 2$ are in direct prop.

$$
\begin{aligned}
\therefore \quad \frac{2}{3}: \frac{4}{15} & \because x: 2 \\
\text { POM } & =\text { POE } \\
\frac{4}{15} \times x & =\frac{2}{3} \times 2 \\
\frac{4 x}{15} & =\frac{4}{3} \\
x & =\frac{4}{8} \times \frac{15}{4} \\
x & =5
\end{aligned}
$$

6.1) AS $2.6: x$ and $7.6: 15 \cdot 2$ are in inverse prop.
then $2.6: x=$ inverse of 7.6115 .2

$$
\begin{aligned}
2.6: x & \because 15.2: 7.6 \\
P O M & =P O E \\
x \times 15.2 & =2.6 \times 7.6 \\
x & =\frac{2.6 \times 7.6}{15.2} \\
x & =\frac{136 \times 76 \times 10}{185 \times 10 \times 16} \\
4 & =\frac{13}{10} \\
x & =1.3
\end{aligned}
$$

ii) (write worse working as in (i))

$$
\begin{aligned}
x: \frac{1}{8} & =\text { inverse of } \frac{4}{5}: 2 \\
x: \frac{1}{8} & \vdots 2: \frac{4}{5} \\
\text { POM } & =P O \varepsilon \\
\frac{1}{8} \times 2 & =x \times \frac{4}{5} \\
\frac{1}{4} & =\frac{4 x}{5} \\
\frac{1}{4} \times \frac{5}{4} & =x \\
x & =\frac{5}{16}
\end{aligned}
$$

Q7. More diaries \longrightarrow More cost
${ }_{13 \text { May } 2020} \mathrm{Pg}-1$
1 diaries and cost are directly prop. to each other.
So Let the cost of 26 diaries $=x$

$$
\begin{aligned}
& 18: 26 \because 802.80: x \\
& P O M=P O E \\
& 26 \times 802.80=18 \times x \\
& x=\frac{136 \times 802.80}{18} \mathrm{~g} \\
& x=1159.6
\end{aligned}
$$

\therefore cost of 26 diaries $=₹ 1159.6$
8. Let the interest be x

As interest and rate of miterest are direct prop. to each other.

$$
\therefore \quad \begin{aligned}
& 8100: x \because 4.5: 5.5 \\
& \text { POM }=P 0 E \\
& x \times 4.5=8100 \times 5.5 \\
& x=\frac{900}{8100 \times 55 \times 16} \\
& 45 \times 10 \\
& x
\end{aligned}
$$

- interest $=₹ 9900$ Ans

9. (Some as Eg.8)

$$
\begin{aligned}
\text { Sum of ratio } & =5+8+9=22 \\
\text { Total sum } & =23410 \\
1^{\text {sr }} \text { part } & =\frac{5}{22} \times 3410{ }^{155} \\
& =775 \\
\text { Ind part } & =\frac{8}{22} \times 3410^{155} \\
& =1240 \\
& =\frac{9}{22} \times 3410^{155} \\
& =1395
\end{aligned}
$$

10 Given ratio $=1 \frac{1}{2}: 1 \frac{2}{3}: 2 \frac{1}{3}=\frac{3}{2}: \frac{5}{3}: \frac{7}{3}$
\int To make the ratio simple, Take LCM of $\left\{\begin{array}{l}\text { denominator and then multiple each ratio with } \\ \text { that } 2 C M \text {. }\end{array}\right.$

Now LCM of $2,3,3=6$

$$
\begin{aligned}
\text { catio } & =\frac{3}{74} \times t^{3}: \frac{5}{7} \times t^{2}: \frac{7}{2} \times t^{2} \\
\text { ratio } & =9: 10: 14
\end{aligned}
$$

sum of ratio $=33$
Total Amount $=6600$

$$
\begin{aligned}
1^{\text {st }} \text { part } & =\frac{900}{23} \times \frac{9}{33} \times 6600=\mp 1800 \\
\text { and part } & =\frac{10}{33} \times 6600 \\
\text { 360 part } & =\frac{14}{33} \times 6600=\$ 2000
\end{aligned}
$$

Any
11. Let $2 A=3 B=4 C=x$

$$
\begin{aligned}
\Rightarrow \quad & 2 A=x, \quad 3 B=x, \quad 4 C=x \\
& A=\frac{x}{2}, \quad B=\frac{x}{3}, \quad C=\frac{x}{4} \\
\therefore & A: B: C=\frac{x}{2} \vdots \frac{x}{3}: \frac{x}{4}
\end{aligned}
$$

$$
=\frac{1}{2}: \frac{1}{3}: \frac{1}{4}
$$

$\left[\begin{array}{l}\text { leave the common } \\ \text { no. or variable }\end{array}\right.$
Now LCM of $2,3,4=12$

$$
\begin{aligned}
\therefore A: B: C & =\frac{1}{x} \times 12^{6} ; \frac{1}{3} \times 12^{4}: \frac{1}{4}: 12^{3} \\
A: B: C & =6: 4: 3
\end{aligned}
$$

$$
\text { Sum of ratio }=6+4+3=13
$$

$$
\text { Total Amount }=4160
$$

$$
\text { Ah share }=\frac{6}{13} \times 4160^{320}=
$$

$$
=1920 .
$$

B^{\prime} 's share
C s share do yourself
12. Given ratio $=2: 3: 5$

Sum of ratio $=2+3+5=10$
Let Total Sum $=x$
Now $B=4.20$

$$
\begin{aligned}
5 B & =\frac{3}{10} \times x \\
4.20 & =\frac{3}{10} \times x \\
4.20 \times \frac{10}{3} & =x \\
5 x & =\frac{42}{3} 14 \Rightarrow x=14
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Total Sum }=14 \\
& \qquad \quad A=\frac{2}{10} \times 14=\frac{28}{10}=2.8 \\
& C=\frac{5}{10} \times 147=7
\end{aligned}
$$

13. Green Ratio $3: 7: 8$

Sum of ratio $=3+7+8=18$

$$
\begin{aligned}
\text { Total sum }=180
\end{aligned}\left[\begin{array} { l }
{ \text { It angle } = \frac { 3 } { 1 8 } \times 1 8 0 1 0 }
\end{array} \left[\begin{array}{l}
\text { Sum of angles of } a \\
\text { triangle is } 180
\end{array}\right.\right.
$$

$2^{\text {nd }}$ angle $\& 3^{\text {ed }}$ angle \rightarrow do yourself.
14. i)

$$
\begin{aligned}
& \text { i) } A: B=2: 3, B: C=4!5 \\
& \frac{A}{B}=\frac{2}{3}, \frac{B}{C}=\frac{4}{5} \quad\left[\begin{array}{l}
\text { Make } B^{\prime} B \text { value same } \\
\frac{A}{B}=\frac{2 \times 4}{3 \times 4}, \frac{B}{C}=\frac{4 \times 3}{5 \times 3} \\
\frac{A}{B}=\frac{8}{12}, \frac{B}{C}=\frac{12}{15} \\
5 \quad A: B: C=8: 12: 15
\end{array} \text { bake of } 3,4=12\right.
\end{aligned}
$$

15. Sum of ratio $=3+4+8=15$

Total Amount $=1500$
1 st $^{\text {rt }}$ partner's share $=\frac{3}{18} \times 1500=300$
$2^{\text {nd }}, 3^{\text {ed }}$ partner's share \rightarrow do yourself
16.

So Let $C=x$

$$
\therefore \quad B=\text { thrice of } C=3 x
$$

and $A=$ twice of $B=2(3 x)=6 x$

$$
5 A: B: C=6 x: 3 x: x
$$

$$
A: B: C=6: 3: 1
$$

sum of ratio $=6+3+1$
Cleave the

$$
=10
$$

Total Amount $=$ ₹ 60
C reciene $=\frac{1}{10} \times 60^{6}=₹ 6$ Atv
17. Given ratio $=3: 5: 7$
sum of ratio $=3+5+7=15$
Total sum $($ perimeter $=$ sum of all sides $)=60 \mathrm{~cm}$

$$
7^{8 t} \text { side }=\frac{3}{18} \times 60^{4}=12 \mathrm{~cm}
$$

$2^{\text {nd }} \& 3^{\text {ed }}$ side \rightarrow do yourself
19. given ratio $=\frac{1}{2}: \frac{3}{5}: \frac{4}{7}$

C to make the ratio simple, take LCM of 2,5,7 and then multiple each ratio with that LCM

$$
\begin{aligned}
\operatorname{LCM}(2,5,7)= & 70 \\
\text { L ratio } & =\frac{1}{4} \times 70^{35}: \frac{3}{5} \times 70^{14}: \frac{4}{7}: 70^{10} \\
& =35: 42: 40
\end{aligned}
$$

$$
\begin{aligned}
\text { sum of ratio } & =35+42+40=117 \\
\text { Total Amount } & =\mp 5850 \\
\text { 1 }^{81} \text { share } & =\frac{35}{117} \times 5850^{50}=21750
\end{aligned}
$$

$2^{\text {nd }}$ share \& $3^{\text {<d }}$ share \rightarrow do yourself.
20. given ratio $=3: 4: 5$
$($ further sum solve by yourself) \downarrow procedures
21. Do yourself (Some as other scams)
22. Given ratio $=1 \frac{1}{2}: 2: \frac{1}{2}=\frac{3}{2}: 21 \frac{1}{2}$

$$
\begin{array}{ll}
=\frac{3}{x} \times 2: 2 \times 2: \frac{1}{x} \times 2 & {[\text { LCM }(2,2)=2} \\
=3: 4: 1 & {[3: 4: 1}
\end{array}
$$

sum of Ratio $=3+4+1=8$
Let cost of article $=x$ Material cost $=\frac{3}{8} \times x$

$$
\begin{aligned}
& 11.25=\frac{3 x}{8} \\
& x=\frac{3.75}{11.25 \times 8} \\
& \therefore \text { cost of article }=30 \\
& \therefore 30
\end{aligned}
$$

18. Let no. of ₹ 10 coins $=2 x$

$$
\begin{aligned}
& n \quad n \text { ₹ } 5 n=5 x \\
& n=n \text { ₹ } n=7 x
\end{aligned}
$$

\therefore Total money of $₹ 10$ coins $=10 \times 2 x=20 x$
$n, \quad, ₹ 5 \quad n=5 \times 5 x=25 x$
$n \quad n$ 于 $2 n=2 \times 7 x=14 x$
\therefore Total Amount $=20 x+25 x+14 x=59 x$
Total value of coins $=236$

$$
\begin{aligned}
\therefore \quad 59 x & =236 \\
x & =\frac{2364}{59} \Rightarrow x=4
\end{aligned}
$$

No. of coins of $\$ 10=2 x=2(4)=8$

$$
\begin{array}{lll}
n & n & n \\
n & n 5=5 x=5(4)=20 \\
n & n & n
\end{array} n \mp 2=7 x=7(4)=28
$$

Chapter - 8
Stob- $8^{\text {th }}$ Profit and Loss,
Selling Price $>$ Cost Price \longrightarrow Profit (Gain) Selling Price < Cost Price \longrightarrow Loss

$$
\left.\begin{array}{rl}
\therefore \text { Profit } & =S P-C P \\
\text { Loss } & =C P-S P \\
\text { Profit \% } & =\frac{P}{C P} \times 100 \\
\text { Loss o\% } & =\frac{L}{C P} \times 100
\end{array}\right\}\left\{\begin{array}{l}
P-\text { Profit } \\
L-\text { Lou must hove } \\
C P \text { to calculate } \\
P \cdot \% \text { or } L \%
\end{array}\right.
$$

(Read formulas gives on $\lg 94$ and 95)

$$
E x-8.1
$$

(1) i) $S P=2900, C P=2800$

As $S P>C P$, there is profit.

$$
\begin{aligned}
& P=S P-C P \Rightarrow P=900-800 \\
& P={ }^{2} 100 \\
& P H=\left(\frac{P}{C P} \times 100\right) \%=\frac{500}{804} \times 16 \phi \\
& P \%=\frac{25}{2} \%=12 \frac{1}{2} \%
\end{aligned}
$$

(ii) Do yourself (same as (i)) $C P>S P \Rightarrow L 100$
(2)

$$
\begin{gathered}
\text { Gain }=263, S P=21113, G F=G \%=1113-C P \\
\text { Gain }=S P-C P \Rightarrow 1113-63 \\
C P=6=21050
\end{gathered}
$$

Now G\% $=\frac{\text { Gain }}{C P} \times 100=\frac{63}{105 \phi} \times 10 \phi$

$$
=\frac{630}{105} 6 \mathrm{H1}=6 \% \text { Ans. }
$$

(3)
(same as (2))
(4) Cost of 12 ball pens $=272$

$$
\left[\begin{array}{lll}
n & 1 / n & n
\end{array} n^{2} \quad\left|\frac{7 x}{1 x}\right|=1^{6} / 6\right]
$$

$$
\begin{aligned}
& \text { Selling price of } 12 \text { ball pens }=12 \times 8=₹ 96 \\
& \text { Gain }=S P-C P=96-72=24 \\
& \text { Goo }=\frac{G}{C P} \times 100=\frac{24}{7,2} \times 100=\frac{100}{3} \% \\
& G \%=33 \frac{1}{3} \%
\end{aligned}
$$

(5) Let the $C P=100$

$$
S P=\frac{7}{10} \text { of } C P=\frac{7}{10} \times 100 x=70
$$

As $C P>S P \Rightarrow$ there is Loss

$$
\begin{aligned}
& \text { Loss }=C P-S P=100-70=30 \\
& \text { Loss of }=\frac{L}{C P} \times 100=\frac{30}{100} \times 100=30 \%
\end{aligned}
$$

(6) $S P=2444, L=\frac{1}{5}$ of $C P \Rightarrow L=\frac{1}{5} \times x$
$\operatorname{Let} C P=x$

$$
L=\frac{x}{5}
$$

Now $L=C P-S P \Rightarrow \frac{x}{5}=x-444$

$$
444=x-\frac{x}{5}=\frac{5 x-x}{5}=\frac{4 x}{5}
$$

$$
444=\frac{4 x}{5} \Rightarrow x=\frac{444 \times 5}{4 x}=555
$$

(i) $\quad C P=2555$
(ii)

$$
\begin{aligned}
L & =\frac{x}{5}=\frac{555^{111}}{8} \\
L & =2111 \\
L \% & =\left(\frac{L}{4} \times 100\right) \%=\frac{41}{555} \times 100
\end{aligned}
$$

L\% = 20% Ane.
(7) Do yourself (same as 6.)
(8) (i) same as 5
(ii) try yourself
(9) Let $S P=2100$

$$
25 \% \text { of } S P=106 \times \frac{25}{200}=25
$$

$6 C P=100+25=125$
As $C P>S P \Rightarrow S$ there is Las

$$
\begin{aligned}
\text { Loss } & =C P-S P=125-100=25 \\
\text { Loss of } & =\frac{L}{C P} \times 100=\frac{25}{125} \times 1020 \\
& =20 \%
\end{aligned}
$$

(10)

$$
\begin{aligned}
& S P \text { of } 4 \text { mangoes }=25 \\
& S P \text { mango }=\frac{5}{4}=21.25 \\
& C P \text { of } 5 \text { mangers }=24
\end{aligned}
$$

$$
C P \text { of } 1 \text { mango }=\frac{4}{5}=20.8
$$

As $S P>C P \Rightarrow$ There is gain

$$
\begin{aligned}
\text { gain } & =S P-C P=1.25-0.8=20.45 \\
\text { gain } y & =\frac{G}{C P} \times 100=\frac{0.45}{0.8} \times 100 \\
& =\frac{45 \times 10}{8 \times 1.00} \times 100=\frac{450}{8}=56.25 \%
\end{aligned}
$$

ar $56 \frac{1}{4} \%$ Ane,
(11) $S P=26000, \quad G=\frac{2}{5}$ of $S P$
(i) $G=\frac{2}{5} \times 60000 \quad \Rightarrow=22400$
(ii)

$$
\begin{array}{ll}
C H=S P-C P \quad & \Rightarrow P=S P-G \\
C P=6000-2400 & \Rightarrow \quad C P=23600
\end{array}
$$

(iii)

$$
\begin{aligned}
G \% & =\frac{G}{C P} \times 100=\frac{2}{2600} \times 100=\frac{200}{3} \\
& =66 \frac{2}{3} \% \text { Ane. }
\end{aligned}
$$

(12) $C P$ of 1 dozen eggs $=210.80$
$C P$ of 10 dozen eggs $=10.80 \times 10=\geqslant 108$
Now 1 down $=12$ eggs

$$
10 \text { drew }=12 \times 10=120 \text { eggs }
$$

$$
\therefore \text { Cp of } 120 \text { eggs }=₹ 108
$$

Now 20 eggs broken

$$
\text { Left eggs }=120-20=100
$$

SP of 100 eggs $=$
Now $C P>\$ P$
S there is Loss \Rightarrow Loss $=C P-S P$

$$
\text { Loss }=108-100=8
$$

$$
\begin{aligned}
\text { Loss } \% & =\frac{L}{C P} \times 100=\frac{\frac{4^{2}}{\frac{8}{108}} \times 100}{\frac{54}{27}} \\
& =\frac{200}{27} \%
\end{aligned}
$$

$\operatorname{Los} \%=7 \frac{11}{27} \%$ Ans

$$
\begin{aligned}
& S P=C P\left(1+\operatorname{gain} \psi_{0}\right) \\
& S P=C P(1-\operatorname{los} \mu)
\end{aligned}
$$

and $S P=C P(1-\operatorname{los} \%)$
(1.)

$$
\begin{aligned}
& C P=1050, P=10 \% \\
& S P=C P(1+P \%)=1050(1+10 \%) \\
&=1050\left(1+\frac{1 \phi}{10 \phi}\right)=1050\left(\frac{10+1}{10}\right) \\
& S P=105 \phi \times \frac{11}{1 \phi}=21155 \quad \text { Ane }
\end{aligned}
$$

(2) i)

$$
\begin{aligned}
& S P=848, P=6 \% \\
& S P=C P(1+P \%) \\
& \delta 48=C P\left(1+\frac{6}{100}\right)=C P\left(\frac{100+6}{100}\right) \\
& 848=C P\left(\frac{106}{100}\right) \frac{8}{1066}=2800 \\
& C P
\end{aligned}
$$

(ii) Same as (i) (use (2) formula)
(3) $S P=21610$, gains $=15 \%$
(i) Same as $2(i) \Rightarrow C P=1400$
(ii) gam $=S P-C P=1610-1400==^{2} 210$ Que
(4) $S P=21449, L=8 \%$
(i) $\quad S P=C P\left(1-L \eta_{0}\right)=$

$$
\begin{aligned}
& \left.S P=C P\left(1-L \%_{1}\right)=C P\left(1-\frac{8}{100}\right)=C P\left(\frac{100-8}{100}\right)=C P\left(\frac{92}{100}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
C P=\frac{1449 \times 10050^{25}}{92} \begin{array}{c}
46 \\
23 \\
C P=21575
\end{array}
\end{gathered}
$$

(ii) 2 ors $=C P-S P=1575-1449=212684$
(5) Cost price of hristheatch $=$ (1350
cost of repair $=250$
Totae $C P$ of weaten $=1350+50=21400$

$$
\begin{aligned}
& P=15 \% \\
& S P= C P(1+P \%)=1400\left(1+\frac{3}{\frac{15}{20}}\right) \\
&=1400\left(\frac{20+3}{20}\right)=70 \\
& S P=21610 \quad \text { Ahm. } \\
&=10 \phi \times \frac{23}{2 \varnothing}
\end{aligned}
$$

(6) Cont price of calculater $=$ ₹ 1100
cost of Cover \& batlery $=$ स 79
Total CP of Calculater $=1100+79$
Now

$$
C P=21179
$$

$$
\begin{aligned}
& S P=C P\left(1-L \%_{0}\right)=1179\left(1-\frac{10}{100}\right) \\
& \text { sotue it. }
\end{aligned}
$$

Now sotue it.
(7)

$$
\begin{aligned}
& S P=2558, \quad L=7 \% \\
& S P=C P(1-L \%) \Rightarrow 588=C P\left(1-\frac{7}{100}\right) \\
& S S 8=C P\left(\frac{100-7}{100}\right) \div C P\left(\frac{93}{100}\right) \\
& C P=\frac{588 \times 100}{95}=600 \\
& C P=2600
\end{aligned}
$$

Now

$$
\begin{aligned}
& P=6 \% \\
& S P=C P(1+P \%) \Rightarrow S P=600\left(1+\frac{6}{100}\right) \\
& S P=600\left(\frac{100+6}{100}\right)=6 \$ \times \times \frac{106}{106} \\
& S P=2636 \text { Aus. }
\end{aligned}
$$

(8)

$$
\begin{aligned}
& S P=210200, L=15 \% \\
& S P=C P(1-L \%) \Rightarrow 10200=C P\left(1-\frac{15}{100}\right) \\
& 10200=C P\left(\frac{20-3}{20}\right)=C P\left(\frac{17}{20}\right) \\
& C P=\frac{600}{10200 \times 20} \\
& C P=17
\end{aligned}
$$

No o New $S P=₹ 12240$
As $S P>C P \Rightarrow$ there is gain

$$
\begin{aligned}
& \text { gain }=12240-12000=2240 \\
& \operatorname{gain} \mu_{0}=\frac{G \operatorname{ain}}{C P} \times 100=\frac{2}{246} \times 1 \phi \phi \\
& =2 \% \text { Ans }
\end{aligned}
$$

(Same as Eg. 15 on $1 g-100$)
(9) Let $C P=$ स 100, gain $=8 \%$

$$
\begin{aligned}
S P & =C P(1+\text { gain न })=100\left(1+\frac{8}{100}\right) \\
& =100\left(\frac{100+8}{100}\right)=108 \\
S P & =2108
\end{aligned}
$$

In oder to get (profir) Guin of 10%,

$$
\begin{aligned}
& S P=C P(1+\text { gain } 1)=100\left(1+\frac{10}{100}\right) \\
& S P=106\left(\frac{100+10}{100}\right)=110 \\
& S P=2110
\end{aligned}
$$

Difference of $S P=110-108=22$
If difference of $S P{ }_{5}{ }^{2} 2$, then $C P=100$

$$
\begin{aligned}
n \quad n \quad n \quad n^{2} 1, n \quad n & =\frac{100}{x} 50 \\
& =250 \\
n \quad n \quad n \quad n \quad 235, n C P & =50 \times 35 \\
C P & =21750 \text { Ane. }
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \text { (i) gain }=10 \% \\
& S P=C P(1+\text { gain } 10) \\
& 11000=C P\left(1+\frac{10}{100}\right) \\
& 11000=C P\left(\frac{100+10}{100}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { SP of } V C R=29785 \\
& \text { (ii) Loss }=5 \%
\end{aligned}
$$

$$
\text { (ii) Loss }=5 \%
$$

$$
S P=C P(1-\operatorname{Loss} \%)
$$

$$
9785=C P\left(1-\frac{5}{100}\right)
$$

$$
978 S=C P\left(\frac{100-S}{100}\right)
$$

$$
\begin{array}{l|l}
11000=C P\left(\frac{110}{100}\right) & 9785=C P\left(\frac{95}{100}\right) \\
C P=\frac{1000}{H 000} \times \frac{10 \phi}{H \phi} & C P=\frac{1957103}{1785 \times \frac{100}{\frac{95}{19}}} \\
C P=210,000 & C P=210300
\end{array}
$$

(iii) Total SP of both $=11000+9785=220,785$
(iv) Total $C P$ of both $=10,000+10,300=220,300$ As total $S P>$ total $C P$
5 there is gain

$$
\begin{aligned}
& \therefore \text { gain }=\text { total SP-10tal CP } \\
& \text { gain }=20,785-20,300=485 \\
& \begin{aligned}
\text { gain } 1 & =\frac{\text { gain }}{\text { Total C1 }} \times 100 \\
& =\frac{485}{20,300} \times 100=2.38
\end{aligned}
\end{aligned}
$$

(11) The yoinse1t. 2.4% (approx.) Ah.
(1) Let the amount paid by A for sofa be $~=x$ As A sold sofa to B at gain of 15%.
So annound paid by $B=x\left(1+\frac{15}{100}\right)=\frac{115}{100} x$
Now B sold sofa to C at loss of 5%
So amount paid by $C=\left(1-\frac{5}{100}\right)$ of (amount paid by B)

$$
=\frac{95}{100} \times \frac{115 x}{100}=\frac{1045 / x}{10000}
$$

$$
\begin{gathered}
\frac{19}{100} \times \frac{23}{100} x=\frac{437}{400} x \\
264
\end{gathered}
$$

But C paid \& 2622

$$
\begin{array}{r}
\Rightarrow \quad 2622=\frac{437}{400} x \\
x=\frac{2622 \times 400}{437} \\
x=2400
\end{array}
$$

\angle amount paid by $A=22400$ She.
(13) Same as (12) try yourself.
(14)

$$
\begin{aligned}
& \text { SP of } 5 \text { oranges }=24 \\
& \text { SP of } 1 \text { orange }=\frac{2}{5} \\
& \text { gain }=40 \%
\end{aligned}
$$

$$
\begin{aligned}
& S P=C P(1+\text { gain of }) \Rightarrow \frac{4}{5}=C P\left(1+\frac{4 \phi}{100}\right) \\
& \frac{4}{5}=C P\left(\frac{14}{10}\right) \Rightarrow C P=\frac{4}{5} \times \frac{10}{14}{ }^{2} \\
& C P=2 \frac{4}{7}
\end{aligned}
$$

Now SP of 1 orange $=\frac{4}{5}=0.8$

$$
c p \text { of } 1 \text { orange }=\frac{4}{7}=0.57
$$

As $S P>C P$, there is profit

$$
P=S P-C P=\frac{4}{5}-\frac{4}{7}=\frac{28-20}{35}=\frac{8}{35}
$$

\therefore Profit made by selling 1 orange $=\frac{8}{35}$
If profit is $₹ \frac{8}{35}$, no. of oranges $=1$
of $n \quad n$ まे $1, \quad, \quad n=1 \div \frac{8}{35}$

$$
=1 \times \frac{35}{8}=\frac{35}{8}
$$

$$
\begin{aligned}
\text { If } n n^{2} 16, n, n & =\frac{35}{8} \times+6^{2} \\
& =70 \text { Ans. }
\end{aligned}
$$

(15) SP of $(1$ dozen) 12 bananas $=225$

$$
\begin{gathered}
\text { gain }=25 \% \\
S P=C P(1+\text { gain } 1) \Rightarrow 25=C P\left(1+\frac{25}{100}\right)
\end{gathered}
$$

$$
\begin{aligned}
25 & =C P\left(\frac{4+1}{4}\right) \\
C P & =525 \times \frac{4}{5}
\end{aligned}=25=C P\left(\frac{5}{4}\right)
$$

In 2 20 , no. of bananas $=12$

$$
2 n+1, \text { no. of } n=\frac{12}{20}
$$

In $250, n n=\frac{6}{-2 \phi} \times 5 \phi$
$=30$ Ami;
(16) SP of 8 articles $=C P$ of 10 articles

Let $S P$ of 1 article $=21$

$$
\text { L } \quad S P \text { of } 8 \quad n=8
$$

$$
C P \text { of } l o \text { articles }=s P \text { of } P \text { article }
$$

$$
\therefore \quad C P \text { of } 10 \text { articles }=8
$$

As $S P$ of 10 articles $>C P$ of 10 articles
s there is gain.

$$
\text { S. gain } \begin{aligned}
& \text { gp -Cp }=10-8=2 \\
& g \% /==\frac{g}{C P} \times 100=\frac{\not 2}{84} \times 100 \\
&=25 \% \text { Anu. }
\end{aligned}
$$

(17) $C P$ of 18 articles $=S P$ of 21 articles Let $C P$ of 1 article $=21$

$$
C P \text { of } 18 \quad n=18
$$

$C P$ of $21 \quad n=21$
SP of 21 articles $=18$

As CP>SP, there is loss

$$
\begin{aligned}
\text { loss } & =C P-S P=21-18=3 \\
L \% & =\frac{31}{2 \times 7} \times 100=\frac{100}{7} \\
& =14 \frac{2}{7} \% \text { Anu }
\end{aligned}
$$

$5 x-8.3$
\{Read difination of Marked Price, Discount, , Selling Price, Sales Tax $(\mathrm{Pg}-102,103)$

$$
\begin{aligned}
\text { Selling brice } & =\text { Marked Price }- \text { Discount } \\
\rightarrow \Delta D & =M P-D \\
\rightarrow \Rightarrow D P & =\left(\frac{D}{M P} \times 100\right) \%
\end{aligned}
$$

\rightarrow Also $S P=M P(1-D \%)$
\rightarrow Sale Tax $=\frac{\text { Rate of sale tax }}{100} \times \mathrm{SP}$
\rightarrow A mount of bile $=S P+$ Sale Tax
$\left.\begin{array}{c}\text { Understand examples grien on } \mathrm{Pg}-103\} \\ \text { to Understand the concept better }\end{array}\right\}$
(1) i)

$$
\begin{aligned}
M P & =21400, S P=21274 \\
D & =M P-S P=\frac{1400-1274=126}{D H}
\end{aligned}
$$

(ii) Same as (i) (Printed price = Marked price)

2 i) $D \%=101, M P=680$

$$
S P=M P(1-D \%)
$$

$$
\begin{aligned}
& S P=680\left(1-\frac{10}{108}\right)=680\left(\frac{10-1}{10}\right)=688 \times \frac{9}{10} \\
& S P=2612 \\
& \text { Now } \Delta=M P-S P=680-612=268
\end{aligned}
$$

Anu,
(ii)

$$
\begin{aligned}
& \Delta=16 \frac{2}{3} \%=\frac{50}{3} \%, M P={ }^{2} 14850 \\
& S P=M P(1-\Delta \%)=14850\left(1-\frac{-50}{3 \times 106}\right) \\
& =14850\left(1-\frac{1}{6}\right)=14850\left(\frac{5}{6}\right) \\
& S P=212.375 \\
& D=M P-S P=14850-12375=22475
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { Selling price of } 1 \text { pen } & ={ }^{2} 6 \\
\text { sp of } 10 n & ={ }^{2} 6 \times 10=60 \\
\text { sale tax } & =12 \% \% \text { of } 60 \\
& =\frac{66 \times \frac{12}{100}}{5}=\frac{36}{5}
\end{aligned}
$$

Amount of bell $=S P+$ Sale tax $=60+\frac{36}{5}$

$$
=\frac{300+36}{5}=\frac{336}{5}={ }^{2} 67.2 \text { Amu }
$$

(4) $S P={ }^{2} 1700, D=15 \%$

$$
\begin{aligned}
& S P=1700, D=15 \% \\
& S P=M P(1-D \%) \Rightarrow 1700=M P\left(\frac{1-\frac{15}{100}}{\frac{20}{2}}\right) \\
& 1700=M P\left(\frac{20-3}{20}\right) \Rightarrow 1700=M P\left(\frac{17}{20}\right) \\
& M P=100 \times \frac{20}{17}=22000 \text { Any }
\end{aligned}
$$

(5) $C P=$ ₹ 1800
(i)

$$
\begin{aligned}
M P & =75 \% \text { aboue the } C P \\
& =C P+75 \% \text { of CP } \\
& =1800+75 \% \text { of } 1800 \\
M P & =1800\left(1+\frac{75^{3}}{4}\right)=4800\left(\frac{7}{4 y}\right)
\end{aligned}
$$

$$
M P=3150
$$

(ii) Now $D=10 \%$

$$
\begin{aligned}
& S P=M P(1-\Delta H)=3150\left(1-\frac{1 \phi}{104}\right) \\
& S P=3156\left(\frac{9}{1 \phi}\right)=2835
\end{aligned}
$$

(iii) $A s S P>C P$, theee is profu
(6) $C P=2700, P=25 \%, D=20 \%$
(i) $S P=C P(1+P \%)=700\left(1+\frac{25}{106}\right)=700\left(\frac{5}{4}\right)$

$$
S P=2875
$$

(ii)

$$
\begin{aligned}
& \text { Now } S P=M P(1-\Delta \%) \\
& 875=M P\left(1-\frac{2 \phi}{\frac{2 \phi}{5}}\right)^{(1-\Delta \%}=M P\left(1-\frac{1}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P=8 P-C P=28.35-1800=1035 \\
& P H_{1}=\frac{P}{C P} \times 100=\frac{10 \% 5}{345115} \times 1 \times 0 \\
& \begin{array}{r}
=\frac{\frac{1035}{184}}{062} \times 100=\frac{115}{2} \text { or } 57 \frac{1}{2} \% \\
\text { Anve }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 875=M P\left(\frac{4}{5}\right) \Rightarrow M P=875 \times \frac{5}{4} \\
& M P=\frac{4375}{4}=21093.75 \text { Que. }
\end{aligned}
$$

(7) $M P=22400, \quad \Delta=10 \%, \quad P=8 \%$
(i) $\quad S P=M P(1-\Delta \%)$ sotue it and get $S P$
(ii) $S P=C P(1+P 1 \cdot)$ solue ir and get $C P$
(8) gain $=25 \%, D=15 \%, \quad S P=21700$
(i) $S P=M P\left(1-D \%_{0}\right)$ solue and get $M P$
(ii) $S P=C P(1+$ gain\% $)$ solue and get $C P$
(9) $S P=2560, D=15 \%$
fistly, $S P=M P\left(1-D F_{0}\right) \quad$ solue it and
Aftre solving $M P=658.82$
Now, $\Delta=10 \%, \quad S P=$?

$$
S P=M P\left(1-D H_{0}\right)
$$

new $S P=658.82\left(1-\frac{10}{100}\right) \quad$ solue and get
(10) $C P=23600, D=10 \%$
(i) Also, $C P$ is 20% less than $M P$

$$
\begin{aligned}
\therefore \quad C P & =M P-20 \% \text { of } M P \quad \text { (Take MP comman } \\
3600 & =(1-20 \%) M P \quad \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 3600=\left(1-\frac{2 \phi}{\frac{206}{5}}\right) M P=\left(\frac{5-1}{5}\right) M P \\
& 3600=\frac{4}{5} M P=M P=3600 \times \frac{5}{4} \\
& M P=24500
\end{aligned}
$$

$$
S P=268.4
$$

(ii)

$$
\begin{aligned}
& S P=M P(1-D H)=4500\left(1-\frac{10}{100}\right) \\
& S P=4500 \times \frac{90}{100}=4050
\end{aligned}
$$

AS $S P>C P$, there is profit

$$
\begin{aligned}
& P=S P-C P=4050-3600=450 \\
& P=F_{0}=\left(\frac{P}{C P} \times 100\right) \%=\frac{450}{3600} \times 10 \\
&=\frac{25}{2} \% \text { or } 12 \frac{1}{2} \% \text { Ave. }
\end{aligned}
$$

(11) (i) Successive discounts is given on fo 103)
(i) - same as Eg 24 pg-106.
(ii) Let $M P$ be 2100

$$
\begin{aligned}
& D_{1} \%=10 \%, D_{2} \%=20 \%, D_{3} \%=5 \% \\
& S P=\left(1-D_{1} \%\right)\left(1-D_{2} \%\right)\left(1-D_{3} \%\right) \text { of } M P \\
& S P=\left(1-\frac{10}{100}\right)\left(1-\frac{20}{100}\right)\left(1-\frac{5}{100}\right) \times 100 \\
& S P=\frac{9 \phi}{1 \alpha \phi} \times \frac{8 \%}{100} \times \frac{95}{180} \times 180
\end{aligned}
$$

$$
S P=9 \times \frac{8^{2}}{\frac{20}{20}} \times 75^{19}=\frac{342}{5}
$$

Now single discount is $D \%$

$$
\begin{aligned}
S P & =M P(1-\Delta \sigma) \\
68.4 & =100\left(1-\frac{\Delta}{100}\right)=100\left(\frac{100-D}{100}\right) \\
6 \theta .4 & =100-D \\
D & =100-68.4=31.6 \% \text { Any }
\end{aligned}
$$

(iii) - same as (ii).

(12)

$$
\begin{aligned}
M P & =224000, \quad D_{1}=10 \%, \quad D_{2}=20 \% \\
S P & =M P\left(1-D_{1} \%\right)\left(1-D_{2} \%\right) \\
& =24000\left(1-\frac{10}{100}\right)\left(1-\frac{20}{100}\right) \\
& =24000 \times \frac{9 \phi}{100} \times \frac{80}{10 \phi} \\
S P & =\$ 14280 \quad \text { Dh u. }
\end{aligned}
$$

(13)

For dealer A : $M P=2500, D_{11}=40 \%, D_{2} \%_{1}=20 \%$

$$
\begin{aligned}
& S P=M P\left(1-D_{1} \psi_{0}\right)\left(1-D_{2} \%\right)=500\left(1-\frac{40}{100}\right)\left(1-\frac{20}{100}\right) \\
& S P=5 \frac{6 \phi}{10} \times \frac{80}{1 \phi 0}=240
\end{aligned}
$$

For dualue $B: D_{1} \%=30 \%, D_{2} \%=20 \%, D_{3} \%=10 \%$.

$$
\begin{aligned}
S P & =M P\left(1-D_{1} \%\right)\left(1-D_{2} \%\right)\left(1-D_{3} \%\right) \\
& =500\left(1-\frac{30}{100}\right)\left(1-\frac{20}{100}\right)\left(1-\frac{10}{100}\right) \\
& =500 \times \frac{7 \phi}{100} \times \frac{8 \phi}{2 \phi} \times \frac{9 \phi}{1 \phi 0} \\
S P & =\frac{252 \phi}{1 \phi}=2.52
\end{aligned}
$$

For Customers, the successive discounts of 40% and 20%. is better offer.
\therefore Offer gain by dealer A is setter for customer.

1 (i)

$$
\begin{aligned}
& (343)^{\frac{1}{3}} \\
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned} \frac{49}{79} \begin{aligned}
& 7 \\
& 7
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{1}{16^{-3 / 4}} & =(16)^{3 / 4} \\
& =\left(2^{4}\right)^{3 / 4} \\
& =(2)^{3} \\
& =8
\end{aligned}
$$

(ii) $(27)^{\frac{2}{3}}$
(iii) $(81)^{-\frac{3}{2}}=\left(\frac{1}{81}\right)^{3 / 2}$

$$
\left(3^{3}\right)^{\frac{2}{3}}=9
$$

$$
=\left(\frac{1}{3^{4}}\right)^{\frac{3}{2}}
$$

$$
=\left(\frac{1}{9^{2}}\right)^{3 / 2}=\frac{1}{8729}
$$

(v) $\left((32)^{-3}\right)^{\frac{1}{5}}$

$$
\begin{aligned}
& (32)^{-3 / 5} \\
& \left(2^{5}\right)^{-3 / 5}=(2)^{-3} \\
& =\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
\end{aligned}
$$

(vi) $\left(\frac{16}{81}\right)^{-3 / 4} \times\left[\left(\frac{9}{25}\right)^{-3 / 2} \div\left(\frac{2}{5}\right)^{-3}\right]$

$$
\begin{aligned}
& \left(\frac{81}{16}\right)^{3 / 4} \times\left[\left(\frac{25}{9}\right)^{3 / 2} \div\left(\frac{5}{2}\right)^{3}\right] \\
& \left(\frac{3}{2}\right)^{4 \times 3 / 4} \times\left[\left(\frac{5}{3}\right)^{2 \times \frac{3}{2}} \div\left(\frac{5}{2}\right)^{3}\right] \\
& \left(\frac{3}{2}\right)^{3} \times\left[\left(\frac{5}{3}\right)^{3} \times\left(\frac{2}{5}\right)^{3}\right] \\
& \frac{27}{8} \times \frac{125}{27} \times \frac{8}{125} \\
& =1
\end{aligned}
$$

(vil)

$$
\begin{aligned}
& {\left[(27)^{-4 / 3} \div 3^{-2}\right]^{1 / 2}} \\
& {\left[\left(\frac{1}{27}\right)^{4 / 3} \div\left(\frac{1}{3}\right)^{2}\right]^{1 / 2}} \\
& {\left[\left(\frac{1}{3}\right)^{3 / \times 4 / 3} \div\left(\frac{1}{3}\right)^{2}\right]^{1 / 2}} \\
& {\left[\left(\frac{1}{3}\right)^{4} \div\left(\frac{1}{3}\right)^{2}\right]^{1 / 2}} \\
& {\left[\left(\frac{1}{3}\right)^{4-2}\right]^{1 / 2}=\left(\frac{1}{3}\right)^{2 / 2 \frac{1}{2}}=\frac{1}{3}}
\end{aligned}
$$

(viा) $\left[(8)^{\frac{2}{3}} \times 2^{-2} \div 6^{0}\right]$

$$
\begin{aligned}
& {\left[(2)^{3 \times 2 / 3} \times\left(\frac{1}{2}\right)^{2} \div 1\right]} \\
& {\left[2^{2} \times \frac{1}{4} \div 1\right]} \\
& {\left[4 \times \frac{1}{4}\right]=1}
\end{aligned}
$$

(1x)

$$
\begin{aligned}
& \left(\frac{2}{3}\right)^{0}+\left(\frac{2}{3}\right)^{-1}+\left(\frac{1}{2}\right)^{2} \\
& 1+\left(\frac{3}{2}\right)+\frac{1}{4} \\
& \frac{4+6+1}{4}=\frac{11}{4}
\end{aligned}
$$

(x)

$$
\begin{aligned}
& 5^{3} \times 5^{7} \div\left(5^{4}\right)^{2} \\
& 5^{3} \times 5^{7} \div 5^{8} \\
& 5^{3+7-8} \\
& 5^{2}=25
\end{aligned}
$$

($x 1$)

$$
\begin{aligned}
& \frac{2^{-5} \times 2^{9}}{2^{-2}} \div \frac{3^{-2} \times 3^{2}}{3^{-4}} \\
& \frac{2^{2} \times 2^{9}}{2^{5}} \div \frac{3^{4} \times 3^{2}}{3^{2}} \\
& \frac{2^{2+9}}{2^{5}} \div \frac{3^{4+2}}{3^{2}}
\end{aligned}
$$

$$
\frac{2^{11}}{2^{5}} \div \frac{3^{6}}{3^{2}}
$$

$$
2^{11-5} \div 3^{6-2}
$$

$$
2^{6} \div 3^{4}
$$

$$
\frac{2^{6}}{3^{4}}=\frac{64}{81}
$$

(xII)

$$
\begin{aligned}
& \frac{3^{4} \times 2^{-2} \times 5^{-3}}{(-6)^{3}} \\
& \frac{3^{4}}{2^{2} \times 5^{3} \times(-6)^{3}} \Rightarrow \frac{813}{4 \times 125 \times\left(-\frac{216)}{8}\right.}=\frac{-3}{4000}
\end{aligned}
$$

(XIII)

$$
\begin{aligned}
& \frac{5^{-4}}{5^{-6} \times(-2)^{3}} \\
& \frac{5^{6}}{5^{-4} \times(-2)^{3}} \Rightarrow \frac{5^{6-4}}{(-2)^{3}}=\frac{5^{2}}{-8}=\frac{-25}{8}
\end{aligned}
$$

(viv) $\frac{(32)^{\frac{2}{5}} \times(4)^{-\frac{1}{2}} \times(8)^{1 / 3}}{2^{-2} \times(64)^{-1 / 3}}$

$$
=2^{5 \times 2 / 5} \times 2^{2 \times-\frac{1}{2}} \times 2^{3 \times \frac{1}{3}} 2^{-2} \div 4^{3 \times-\frac{1}{3}} \quad \frac{2^{2} \times 2^{-1} \times 2}{2^{-2} \times 4^{-1}}
$$

$$
\begin{aligned}
\frac{2^{2+(-1)+1}}{2^{-2} \div\left(2^{2}\right)^{-1}} & \Rightarrow \frac{2^{2}}{2^{-2} \div 2^{-2}} \\
& \Rightarrow \frac{2^{2}}{2^{-2-(-2)}}=\frac{2^{2}}{2^{0}}=\frac{4}{1}=4
\end{aligned}
$$

$(x v)(16)^{\frac{-1}{4}}+(0.8)^{0}+(32)^{2 / 5}+(8)^{2 / 3}$

$$
2^{4 \times-\frac{1}{4}}+1+(2)^{5 \times \frac{2}{5}}+2^{3 \times-\frac{1}{3}}
$$

$$
2^{-1}+1+(2)^{2}+2
$$

$$
\frac{1}{2}+1+4+2
$$

$$
\begin{aligned}
& \frac{1}{2}+7 \\
& \frac{1+14}{2}=\frac{15}{2}
\end{aligned}
$$

(xvi)

$$
\begin{aligned}
& \left(\frac{-1}{2}\right)^{4} \times\left(\frac{-1}{2}\right)^{6} \div\left(\frac{-1}{2}\right)^{5} \\
& \left(\frac{-1}{2}\right)^{4+6-5}=\left(\frac{-1}{2}\right)^{5}=\frac{-1}{32}
\end{aligned}
$$

(xviI) $(-3)^{4} \times(-3)^{6} \div(-3)^{9}$

$$
(-3)^{4+6-9}=(-3)^{1}=-3
$$

2 (i) $a^{6+4+(-5)+0}$
(ii) $a^{\left(-\frac{1}{3}-\frac{2}{3}\right)}$

$$
=a^{5}
$$

$$
=a^{-\frac{3}{3}}=a^{-1}=\frac{1}{a}
$$

(iii) H.W
(III)

$$
\begin{aligned}
& \left(a^{-1}+b^{-1}\right) \div(a b)^{-1}+\left(a^{-1}-b^{-1}\right) \div\left(a^{-2}+b^{-2}\right) \\
& \left(\frac{1}{a}+\frac{1}{b}\right) \div\left(\frac{1}{a b}\right)+\left(\frac{1}{a}-\frac{1}{b}\right) \div\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \\
& \left(\frac{b+a}{a b}\right) \times \frac{a b}{1}+\left(\frac{b-a}{a b}\right) \div\left(\frac{b^{2}-a^{2}}{a^{2} b^{2}}\right) \\
& (b+a)+\frac{b-a}{a b} \times \frac{a^{2} b^{2}}{b^{2}-a^{2}} \\
& (b+a)+\frac{b-a}{a b} \times \frac{a^{2} b^{2} a b}{(b-a)(b+a)} \\
& (b+a)+\frac{a b}{(b+a)} \\
& =\frac{b^{2}+a^{2}+2 a b+a b}{b+a} \\
& \frac{(b+a)^{2}+a b}{(b+a)}=\frac{a^{2}+a^{2}+3 a b}{b+a} \\
&
\end{aligned}
$$

3 (i) $\left((-5)^{3}\right)^{\frac{2}{3}}+(3)^{5} \div 3^{3}+\left(\frac{1}{7}\right)^{0}$

$$
\begin{aligned}
& (-5)^{2}+(3)^{5} \div(3)^{3}+1 \\
& 25+(3)^{5-3}+1 \\
& 25+(3)^{2}+1 \\
& 25+9+1 \\
& 35
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 3^{5} \times 3^{-4}-\left(2^{2} \times 3\right)^{2}+\left(\frac{3}{2}\right)^{-1}+3^{-1}+\left(3^{3}\right)^{-\frac{1}{3}} \\
& 3^{5+(-4)}-(4 \times 3)^{2}+\left(\frac{2}{3}\right)+\left(\frac{1}{3}\right)+(3)^{-1} \\
& 3^{1}-(12)^{2}+\frac{2}{3}+\frac{1}{3}+\frac{1}{3} \\
& 3-144+\frac{2}{3}+\frac{1}{3}+\frac{1}{3} \\
& \frac{-141}{1}+\frac{2}{3}+\frac{1}{3}+\frac{1}{3}=\frac{-419}{3} \\
& -\frac{423+2+1+1}{3}=
\end{aligned}
$$

(III)

$$
\begin{aligned}
& \left(x^{-1} y^{2} z^{-3}\right)^{-3} \\
& \left(x^{-1}\right)^{-3}\left(y^{2}\right)^{-3}\left(z^{-3}\right)^{-3} \\
& x^{3} y^{-6} z^{9} \\
& \frac{x^{3} z^{9}}{y^{6}}
\end{aligned}
$$

(IV)

$$
\begin{aligned}
& \frac{a^{3} b^{3} c^{-2}}{a^{-3} b^{-3} c} \\
& \frac{a^{3} \cdot b^{3} \cdot a^{3} \cdot b^{3}}{c^{2} \cdot c} \\
& \frac{a^{3+3} b^{3+3}}{c^{2+1}}
\end{aligned}
$$

$$
\frac{a^{6} b^{6}}{c^{3}}
$$

4

$$
\begin{aligned}
& \left(\frac{1}{81}\right)^{\frac{1}{4}}-\left(\frac{27}{64}\right)^{-\frac{1}{3}} \div\left(\frac{1}{8}\right)^{-\frac{2}{3}}+\left(\frac{1}{16}\right)^{-\frac{3}{4}} \\
& \left(\frac{1}{3}\right)^{4 \times \frac{1}{4}}-\left(\frac{3}{4}\right)^{3 x-\frac{1}{3}} \div\left(\frac{1}{2}\right)^{3 x-\frac{2}{3}}+\left(\frac{1}{2}\right)^{4 \times \frac{3}{4}} \\
& \left(\frac{1}{3}\right)-\left(\frac{3}{4}\right)^{-1} \div\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{2}\right)^{-3} \\
& \left(\frac{1}{3}\right)-\left(\frac{4}{3}\right) \div\left(\frac{2}{1}\right)^{2}+\left(\frac{2}{1}\right)^{3} \\
& \frac{1}{3}-\frac{4}{3} \times \frac{1}{4}+8 \\
& \frac{1}{3}-\frac{1}{3}+8=8 \text { Ans }
\end{aligned}
$$

5(i) $\left(27 x^{-3}\right)^{\frac{1}{3}}$
(ii)

$$
3^{3 \times \frac{1}{3}} \cdot x^{-3 \times \frac{1}{3}}
$$

$$
3 \cdot x^{-1}=\frac{3}{x}
$$

$$
\begin{aligned}
& \left(64 p^{3}\right)^{\frac{4}{3}} \\
& \left(4^{3} p^{3}\right)^{\frac{4}{3}} \\
& 4^{3 \times \frac{4}{3}} p^{3 \times \frac{4}{3}} \\
& 4^{4} p^{4}=256 p^{4}
\end{aligned}
$$

(iii) $(-243)^{\frac{2}{5}}\left(x^{-3}\right)^{\frac{2}{3}}$
(iv) $\sqrt[3]{x^{6} y^{-9} z^{12}} \div \sqrt[4]{x^{4} y^{8} z^{-4}}$

$$
(-3)^{5 \times \frac{2}{5}}(x)^{-2}
$$

$\frac{(-3)^{2}}{(x)^{2}}=\frac{9}{x^{2}}$

$$
\begin{aligned}
& \frac{x^{\frac{6}{3}} \cdot y^{-\frac{9}{3}} z^{\frac{12}{3}}}{x^{\frac{4}{4}} \cdot y^{\frac{8}{4}} z^{-\frac{4}{4}}} \\
& \frac{x^{2} y^{-3} z^{4}}{x^{1} y^{2} z^{-1}} \\
& x^{2-1} y^{-3-2} z^{4-(1)} \\
& x^{1} y^{-5} z^{5} \Rightarrow \frac{x z^{5}}{4^{5}}
\end{aligned}
$$

6(i)

$$
\begin{aligned}
& \frac{8^{\frac{2 n}{3}} \times(64)^{\frac{-n}{6}}}{(27)^{\frac{4 n}{3}}} \\
& \frac{2^{3 \times \frac{2 n}{3}} \times 2^{6 \times-\frac{n}{6}}}{(3)^{3 \times \frac{4 n}{3}}} \Rightarrow \frac{2^{2 n} \times 2^{-n}}{(3)^{4 n}} \Rightarrow \frac{2^{2 n+(-n)}}{3^{4 n}} \\
& \Rightarrow \frac{2^{n}}{3^{4 n}}=\left(\frac{2}{3^{4}}\right)^{n}=\left(\frac{2}{81}\right)^{n}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{2^{n+1} \times 4^{n+1}}{2^{n-1} \times 4^{n-1}} & \Rightarrow \frac{2^{n} \cdot 2^{1} \times 4^{n} \cdot 4^{1}}{2^{n} \cdot 2^{-1} \times 4^{n} \cdot 4^{-1}} \\
\frac{2^{1} \times 4^{1}}{2^{-1} \times 4^{-1}} & \Rightarrow 2^{1-(-1)} \times 4^{1-(-1)} \\
& \Rightarrow 2^{2} \times 4^{2} \\
& \Rightarrow 4 \times 16 \\
& \Rightarrow 64
\end{aligned}
$$

(iii) $\frac{4 \times 16^{n+1}-16 \times 4^{2 n}}{4 \times 4^{2 n+3}-16^{n+1}}$

$$
\begin{aligned}
& =\frac{4 \times 4^{2(n+1)}-4^{2} \times 4^{2 n}}{4 \times 4^{2 n+3}-4^{2(n+1)}} \\
& =\frac{4 \times 4^{2 n+2}-4^{2 n+2}}{4 \times 4^{2 n+3}-4^{2 n+2}} \\
& =\frac{4^{2 n+2}(4-1)}{4^{2 n+2}\left(4^{2}-1\right)} \\
& =\frac{3}{16-1}=\frac{3}{15}=\frac{1}{5}
\end{aligned}
$$

(IV)

$$
\begin{aligned}
& \frac{6^{2 n+3}-(36)^{n+2}}{\left[(216)^{n+1}\right]^{2 / 3}} \\
& =\frac{6^{2 n+3}-6^{2(n+2)}}{(6)^{3(n+1) \times 2}} \\
& =\frac{6^{2 n+3}-6^{2 n+4}}{6^{2(n+1)}} \\
& =\frac{6^{2 n} \cdot 6^{3}-6^{2 n} \cdot 6^{4}}{6^{2 n} \cdot 6^{2}} \\
& =6^{2 n}(1-6) \\
& =6(1-6) \\
& =6(-5)
\end{aligned}
$$

7 (1) $\left(\frac{x^{b}}{x^{a}}\right)^{b+a-c} \cdot\left(\frac{x^{c}}{x^{b}}\right)^{c+b-a} \cdot\left(\frac{x^{a}}{x^{c}}\right)^{c+a-b}$

$$
\left(x^{b-a}\right)^{b+a-c} \cdot\left(x^{(-b)^{c+b-a}} \cdot\left(x^{a-c}\right)^{c+a-b}\right.
$$

by product law: base same \rightarrow powers ashed

$$
(b-a)(b+a-c)+(c-b)(c+b-a)+(a-c)(c+a-b)
$$

x

$$
\begin{aligned}
& x \text { (} \begin{array}{l}
b^{2}+a b-b c-a b-a^{2}+a c+c^{2}+b c-a c-b c-b^{2}+a b+a c \\
x \\
x^{2}=1 \quad \text { R.H.S }=\text { L. } 2 b-c^{2}-a c+b c
\end{array}
\end{aligned}
$$

(ii) L.H.S:

$$
\text { H.S: }\left(\frac{x^{m}}{x^{n}}\right)^{\frac{1}{m n}}\left(\frac{x^{n}}{x^{r}}\right)^{\frac{1}{n r}}\left(\frac{x^{r}}{x^{m}}\right)^{\frac{1}{r m}}
$$

$$
\begin{aligned}
& \left(\frac{x}{x^{n}}\right)\left(x ^ { r } x ^ { \frac { m - n } { m n } } \cdot \left(x ^ { \frac { n - r } { m }) ^ { \frac { 1 } { n r } } (x ^ { r - m }) ^ { \frac { 1 } { k m } } } \left(x^{\frac{n-r}{n r}} x^{\frac{1}{r-m}} x^{\frac{r m}{r m}}\right.\right.\right.
\end{aligned}
$$

$$
x^{\frac{m-n}{m n}} \cdot x^{\frac{n-r}{n h}} \cdot x^{\frac{r-m}{r m}}
$$

$$
x^{\frac{m-n}{m r}+\frac{n-r}{n r}+\frac{r-m}{k m}}
$$

$$
x \quad r(m-n)+m(n-\Delta)+n(r-m)
$$

$$
\begin{aligned}
& x^{\frac{r m}{m}-\Delta n+m n-m n+n r-n m} \\
& x^{\frac{0}{m n r}} \Rightarrow x^{0}=1=\text { R.H.S }
\end{aligned}
$$

(iII) L.H.S $\frac{1}{1-x^{m-n}}+\frac{1}{1-x^{n-m}}$

$$
\begin{aligned}
& \frac{1-x^{n-m}+1-x^{m-n}}{\left(1-x^{m-n}\right)\left(1-x^{n-m}\right)} \\
& \frac{2-x^{n-m}-x^{m-n}}{1\left(1-x^{n-m}\right)-x^{m-n}\left(1-x^{n-m}\right)} \\
& \frac{2-x^{n-m}-x^{m-n}}{1-x^{n-m}-x^{m-n}+x^{m-n} x^{n-m}} \\
& \frac{2-x^{n-m}-x^{m-n}}{1-x^{n-m}-x^{m-n}+x^{m-n+n-m}} \\
& \frac{2-x^{n-m}-x^{m-n}}{1-x^{n-m}-x^{m-n}+x^{0}}
\end{aligned}
$$

(Take L.C.M)

$$
\begin{aligned}
& =\frac{2-x^{n-m}-x^{m-n}}{1-x^{n-m}-x^{m-n}+1} \\
& =\frac{2-x^{n-m}-x^{m-n}}{2-x^{n-m}-x^{m-n}}=1=\text { R.H.S }
\end{aligned}
$$

(IV) L.H.S

$$
\begin{aligned}
& \text { L.H.S } \\
& \begin{array}{l}
\left(x^{a-b}\right)^{a+b} \cdot \\
\left(x^{b-c}\right)^{b+c} \cdot\left(x^{(-a}\right)^{c+o} \\
x^{(a-b)(a+b)} \cdot x^{(b-c)(b+c)} \cdot x^{(c-a)(c+a)} \\
x^{a^{2}-b^{2}} \cdot x^{b^{2}-c^{2}} \cdot x^{c^{2}-a^{2}} \cdot\left[a^{2}-b^{2}=(a+b)(a-b)\right] \\
x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}} \\
x^{0}=1 \quad \text { R.H.S }
\end{array}
\end{aligned}
$$

$8(i)$

$$
\begin{aligned}
& 3^{x+1}=\frac{1}{(27)^{x-3}} \\
& 3^{x+1}=\frac{1}{\left(3^{3}\right)^{x-3}} \Rightarrow 3^{x+1}=\frac{1}{(3)^{3(x-3)}} \\
& 3^{x+1}=3^{-3(x-3)} \Rightarrow 3^{x+1}=3^{-3 x+9} \\
& x+1=-3 x+9 \\
& x+3 x=9-1 \\
& 4 x=8 \\
& x=\frac{8}{4} 2 \Rightarrow x=2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 2^{5 x-1}=2^{3 x+1} \\
& 5 x-1=3 x+1 \\
& 5 x-3 x=1+1 \\
& 2 x=2^{2} \\
& x=\frac{2}{2} 1 \Rightarrow x=1
\end{aligned}
$$

1. (i) Radius
(iv) Point of contact

2
(i) Equal
(iv) Twice
(vii) Segment
(x) Circular region
3. (i) True
(iv) False
(vii) True

4 (i) circle
(ii) 16 cm

5. Diameter $=15 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Diameter }=\frac{15 \mathrm{~cm}}{2} \mathrm{~cm}=7.5 \mathrm{~cm} \\
& \text { Radius }
\end{aligned}
$$

(i) $O P=7 \mathrm{~cm}$
$\therefore P$ lies inside the circle as $O P<$ radius (ii) $O O=9 \mathrm{~cm}$
$\therefore Q$ lies outside the circle as $O Q>$ radive

$$
\text { (iii) } O R=7.5 \mathrm{~cm}
$$

\therefore R lies on the circumference of the circle

[^0]: Based upon Survey of India map with the permission of the Surveyor General of India

[^1]: 1. Based upon Survey of India map with the permission of the Surveyor General of India.
